\(x^2+1\)

2) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

1)Vì x2 \(\ge\) 0 với mọi x E R

=>x2+1 \(\ge\) 1 > 0 với mọi x E R

=>đa thức vô nghiệm

2)Vì 2x6 \(\ge\) 0 với mọi x E R

4x4 \(\ge\) 0 với mọi x E R;x2 \(\ge\) 0 với mọi x E R

=>2x6+4x4+x2+2 \(\ge\) 2 > 0 với mọi x

=>đa thức vô nghiệm

20 tháng 4 2018

*thu gọn đa thức f(x)

f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4

     =4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1

     =x2+ 1

Chứng tỏ f(x) không có nghiệm

f(x)= x2+ 1

Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)

          1 > 0

nên x2+ 1 > 0

mà x+ 1 = 0 ( vô lí)

=> f(x) vô nghiệm

20 tháng 4 2018

Ta có : 

\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)

\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)

\(f\left(x\right)=x^2+1\)

Lại có : 

\(x^2\ge0\)

\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)

Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 ) 

Chúc bạn học tốt ~ 

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

a) Đặt P(y)=0

⇔3y-6=0

⇔3y=6

hay y=2

Vậy: S={2}

Đặt N(x)=0

\(\Leftrightarrow\frac{1}{3}-2x=0\)

\(\Leftrightarrow2x=\frac{1}{3}\)

hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)

Vậy: \(S=\left\{\frac{1}{6}\right\}\)

Đặt D(z)=0

\(z^3-27=0\)

\(\Leftrightarrow z^3=27\)

hay z=3

Vậy: S={3}

Đặt M(x)=0

\(x^2-4=0\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

Vậy: S={2;-2}

Đặt C(y)=0

\(\Leftrightarrow\sqrt{2}y+3=0\)

\(\Leftrightarrow\sqrt{2}y=-3\)

\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)

Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)

b) Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+1\ge1>0\forall x\)

hay Q(x) vô nghiệm(đpcm)

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm