K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow m^2-6m+9-m^2+6m>0\)

=>9>0(luôn đúng)

b: \(\Rightarrow25m^2+20m+5m+4>25m^2+25m\)

=>4>0(luôn đúng)

15 tháng 4 2018

ẩn x tham số m

\(\Leftrightarrow\left[\left(m^2-m-1\right)-\left(3-m\right)\right]x>5m\)

\(\Leftrightarrow\left(m^2-4\right)x>5m\)

\(m=2;\Leftrightarrow0.x>5.2=>vo.N_0\)

\(m=-2\Leftrightarrow0.x>-10;N_0\forall\in R\)

\(\left|m\right|< 2\Leftrightarrow x< \dfrac{5m}{m^2-4}\)

\(\left|m\right|>2\Leftrightarrow x>\dfrac{5m}{m^2-4}\)

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

28 tháng 5 2017

a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)

Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì

\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)

Nếu \(m< 1\)thì :

\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)

b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)

Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì

\(\Leftrightarrow x< m-2\)

Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì

\(\Leftrightarrow x>m-2\)

c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)

\(\Leftrightarrow\left(m^2-4\right)x>5m\)

Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì

\(x>\frac{5m}{m^2-4}\)

Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì

\(x< \frac{5m}{m^2-4}\)

12 tháng 12 2018

Ta có: m2-6m+15 = m2-2.3.m+32+6 = (m-3)2+6

mà (m-3)2 >0 --> (m-3)2+6 >6 nên cũng >0

---> đpcm

12 tháng 12 2018

ta có:m2-6m+15

=m2-2m.3+9-9+15

=(m-3)2+6

=>(m-3)2≥0; 6>0

=>(m-3)2+6>0

vậy : m2-6m+15>0

nếu thấy hay cho 1 like

19 tháng 2 2018

câu a và b e thay m=0 và m=3 vào pt.

câu c e thay x=-2 vào pt và tìm m

20 tháng 2 2018

a,với m=0 thì

4x^2 - 25 +0^2 + 4*0*x=0

4x^2-25=0

(2x-5)(2x+5)=0

2x-5=0 hoặc 2x+5=0

x=5/2 hoặc x=-5/2

b,với m=-3 thi

4x^2-25+9-12x=0

4x^2-12x-16=0

(2x-4)^2-36=0

(2x-4-6)(2x-4+6)=0

(2x-10)(2x+2)=0

2x-10=0 hoặc 2x+2=0

x=5 hoặc x=-1

c,với x=-2 thì

16-25+m^2-8m=0-4-5

m^2-8m+16-25=0

(m-4)^2-5^2=0

(m-4-5)(m-4+5)=0

(m-9)(m+1)=0

m-9=0 hoặc m+1=0

m=9 hoặc m=-1

29 tháng 8 2016

\(a,x^2+5y^2+2x-4xy-10y+14\)

\(=x^2+2x-4xy+5y^2-10y+14\)

\(=x^2+2x\left(1-2y\right)+5y^2-10y+14\)

\(=x^2+2.x.\left(1-2y\right)+\left(1-2y\right)^2+5y^2-10y-\left(1-2y\right)^2+14\)

\(=\left(x+1-2y\right)^2+5y^2-10y-\left(1-4y+4y^2\right)+14\)

\(=\left(x+1-2y\right)^2+5y^2-10y-1+4y-4y^2+14\)

\(=\left(x+1-2y\right)^2+y^2-6y+13=\left(x+1-2y\right)^2+y^2-2.y.3+9+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4>0\) với mọi x,y (đpcm)

b,tương tự

AH
Akai Haruma
Giáo viên
31 tháng 3 2019

Bài 1:

Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)

Xét hiệu:

\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)

\(=x^2(x-y)-y^2(x-y)\)

\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)

\(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm

\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)

\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 3 2019

Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:

\(111(x-2)\geq 1998\)

\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)

\(\Leftrightarrow x\geq 20\)

Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.