Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ẩn x tham số m
\(\Leftrightarrow\left[\left(m^2-m-1\right)-\left(3-m\right)\right]x>5m\)
\(\Leftrightarrow\left(m^2-4\right)x>5m\)
\(m=2;\Leftrightarrow0.x>5.2=>vo.N_0\)
\(m=-2\Leftrightarrow0.x>-10;N_0\forall\in R\)
\(\left|m\right|< 2\Leftrightarrow x< \dfrac{5m}{m^2-4}\)
\(\left|m\right|>2\Leftrightarrow x>\dfrac{5m}{m^2-4}\)

Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)
Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì
\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)
Nếu \(m< 1\)thì :
\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)
b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)
Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(\Leftrightarrow x< m-2\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(\Leftrightarrow x>m-2\)
c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)
\(\Leftrightarrow\left(m^2-4\right)x>5m\)
Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(x>\frac{5m}{m^2-4}\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(x< \frac{5m}{m^2-4}\)

câu a và b e thay m=0 và m=3 vào pt.
câu c e thay x=-2 vào pt và tìm m
a,với m=0 thì
4x^2 - 25 +0^2 + 4*0*x=0
4x^2-25=0
(2x-5)(2x+5)=0
2x-5=0 hoặc 2x+5=0
x=5/2 hoặc x=-5/2
b,với m=-3 thi
4x^2-25+9-12x=0
4x^2-12x-16=0
(2x-4)^2-36=0
(2x-4-6)(2x-4+6)=0
(2x-10)(2x+2)=0
2x-10=0 hoặc 2x+2=0
x=5 hoặc x=-1
c,với x=-2 thì
16-25+m^2-8m=0-4-5
m^2-8m+16-25=0
(m-4)^2-5^2=0
(m-4-5)(m-4+5)=0
(m-9)(m+1)=0
m-9=0 hoặc m+1=0
m=9 hoặc m=-1

\(a,x^2+5y^2+2x-4xy-10y+14\)
\(=x^2+2x-4xy+5y^2-10y+14\)
\(=x^2+2x\left(1-2y\right)+5y^2-10y+14\)
\(=x^2+2.x.\left(1-2y\right)+\left(1-2y\right)^2+5y^2-10y-\left(1-2y\right)^2+14\)
\(=\left(x+1-2y\right)^2+5y^2-10y-\left(1-4y+4y^2\right)+14\)
\(=\left(x+1-2y\right)^2+5y^2-10y-1+4y-4y^2+14\)
\(=\left(x+1-2y\right)^2+y^2-6y+13=\left(x+1-2y\right)^2+y^2-2.y.3+9+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4>0\) với mọi x,y (đpcm)
b,tương tự

Bài 1:
Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)
Xét hiệu:
\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)
\(=x^2(x-y)-y^2(x-y)\)
\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)
Vì \(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm
\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)
\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)
Ta có đpcm.
Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:
\(111(x-2)\geq 1998\)
\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)
\(\Leftrightarrow x\geq 20\)
Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.
a: \(\Leftrightarrow m^2-6m+9-m^2+6m>0\)
=>9>0(luôn đúng)
b: \(\Rightarrow25m^2+20m+5m+4>25m^2+25m\)
=>4>0(luôn đúng)