Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.....................
\(\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Tham khảo
chứng tỏ rằng : B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 + 1/82
Học tốt
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7.8}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
B < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
B < \(1-\dfrac{1}{8}\)\(=\)\(\dfrac{7}{8}\)< 1
Vậy B < 1 (đpcm)
P/S: đpcm là điều phải chứng minh.:)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=1-\frac{1}{8}<1\)
\(\RightarrowĐPCM\)
$=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=1-\frac{1}{8}<1$
dpcm
Ta có 1/2^2<1/1.2 ; 1/3^2<1/2.3 ; ....; 1/8^2<1/7.8
=> B<1/1.2+1/2.3+...+1/7.8=1-1/2+1/2-1.3+.....+1/7-1/8=1-1/8<1 (ĐPCM)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\); ... ; \(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế với vế
=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
=> \(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)(1)
Lại có \(\frac{7}{8}< 1\)(2)
Từ (1) và (2) => \(B< \frac{7}{8}< 1\Rightarrow B< 1\left(đpcm\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(B< 1-\frac{1}{8}< 1\)
\(\Rightarrow B< 1\) (đpcm)
Bài làm :
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}=\frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Đặt \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\)
Dễ thấy: \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)\(< A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\left(1\right)\)
Ta có:\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}< 1\left(2\right)\)
Từ \((1);(2)\) ta có: \(B< A< 1\Rightarrow B< 1\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)
vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...............
\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)
nên \(B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(..........................\)
\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}\) ( 1 )
mà \(\frac{7}{8}< 1\) ( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow B< 1\)
vậy ......................
Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)
Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
=1−12+12−13+...+17−18=1−12+12−13+...+17−18
=1−18<1(2)=1−18<1(2)
Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1