K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\)

2 tháng 5 2020

Mình đồng tình với bạn

5 tháng 4 2018

Ta có 1/22<1/1.2

         1/32<1/2.3

         1/42<1/3.4

         ................

        1/8²<1/7.8

=>B<1/1.2+1/2.3+1/3.4+...+1/7.8

=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8

=>B<1-1/8

Vậy B < 1

18 tháng 3

ad a zwe zxdb WE4RBTa

2 tháng 5 2018

b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8

b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8

b=1-1/8

b=7/8

<=>b<1

k cho mink nha

18 tháng 3

b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8

b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8

b=1-1/8

b=7/8

<=>b<1
owo

DD
21 tháng 5 2021

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

21 tháng 5 2021

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

16 tháng 7 2019

B=[(45.79+45.21)]:90-5^2]:5+2^3                                  B=[(45.79+45.21):90-25]:5+8                                      B=[(45.(79+21):65]:13                                                  B=[(45.100):65]:13                                                        B=[4500:65]:13                                                           B=4500:65:13                                                       

9 tháng 4 2019

Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}< 1\)

\(\Rightarrow B< 1\) \(\Rightarrowđpcm\)

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn