K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

a, Vì dãy số tự nhiên theo quy luật: chẵn, lẻ, chẵn, lẽ

=> trong 2 số tự nhiên liên tiếp có 1 số chẵn và 1 số lẻ

Số chẵn luôn chia hết cho 2

=> Có 1 số luôn chia hết cho hai.

b, Trong ba số tự nhiên liên tiếp mình cho là a; a+1; a+2

Nếu a \(⋮\) 3 ta có điều phải chứng minh.
Nếu a: 3 (dư 1)

=> a+1: 3( dư 2)

=> a+2\(⋮\)3

=> Có 1 số chia hết cho 3.
Nếu a: 3 ( dư 2) thì a + 1 \(⋮\)3.
 

6 tháng 8 2017

a) Hai số tự nhiên liên tiếp luôn có 1 số chẵn và 1 số lẻ. Mà số chẵn chia hết cho 2 nên trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2.

b) Trong ba số tự nhiên liên tiếp, nếu số thứ nhất chia hết cho 3 thì có 1 số chia hết cho 3. Nếu số thứ nhất chia 3 dư 1 thì số thứ ba chia hết cho 3. Nếu số thứ nhất chia 3 dư 2 thì số thứ hai chia hết cho 3. Vậy trong ba số tự nhiên liên tiếp, có 1 số chia hết cho 3.