K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
H10 GP
a, Vì dãy số tự nhiên theo quy luật: chẵn, lẻ, chẵn, lẽ
=> trong 2 số tự nhiên liên tiếp có 1 số chẵn và 1 số lẻ
Số chẵn luôn chia hết cho 2
=> Có 1 số luôn chia hết cho hai.
b, Trong ba số tự nhiên liên tiếp mình cho là a; a+1; a+2
Nếu a \(⋮\) 3 ta có điều phải chứng minh.
Nếu a: 3 (dư 1)
=> a+1: 3( dư 2)
=> a+2\(⋮\)3
=> Có 1 số chia hết cho 3.
Nếu a: 3 ( dư 2) thì a + 1 \(⋮\)3.
a) Hai số tự nhiên liên tiếp luôn có 1 số chẵn và 1 số lẻ. Mà số chẵn chia hết cho 2 nên trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp, nếu số thứ nhất chia hết cho 3 thì có 1 số chia hết cho 3. Nếu số thứ nhất chia 3 dư 1 thì số thứ ba chia hết cho 3. Nếu số thứ nhất chia 3 dư 2 thì số thứ hai chia hết cho 3. Vậy trong ba số tự nhiên liên tiếp, có 1 số chia hết cho 3.