K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

Câu 2 :

Ta có: abc = a00 + bc = a x 100 + bc

Vì a x 100 chia hết cho 25 (trong tích có 100 chia hết cho 25)

=> bc cũng phải chia hết cho 25     (Để abc chia hết cho 25)

Diễn đạt hơi lủng củng để dễ hiểu mong bạn thông cảm

9 tháng 2 2020

a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)

tổng của chúng là : a + a + 1 + a + 2

= 3a + 3 

= 3(a + 1) ⋮ 3

b, gọi 4 số tự nhiên liên tiếp là : b,b+1;b+2;b+3 (b thuộc N)

ta có tổng của chúng là : 

 b + b + 1 + b + 2 + b + 3

= 4b + 6

4b ⋮ 4; 6 không chia hết cho 4

=>  4b + 6 không chia hết cho 4

c, aaaaaa = 111111.a

= 15873.7.a ⋮ 7

d, abc abc

= 100000a + 10000b + 1000c + 100a + 10b + c

= 100100a + 10010b + 1001c

= 1001(100a + 10b + c)

= 11.91(100a + 10b + x) ⋮ 11

e, aaa = a.111 = a.3.37 ⋮ 37

f, ab - ba

= 10a + b - 10b - a 

= 9a - 9b

= 9(a-b) ⋮ 9

23 tháng 4 2018

Ta có abcd = 1000a + 100b + 10c + d

                  = 1000a + 96b + 8c + (d + 2c + 4b)

Ta thấy 1000a chia hết cho 8, 96a chia hết cho 8, 8c chia hết cho 8, d+2c+4b chia hết cho 8 (giả thuyết)

Vậy abcd chia hết cho 8 (đpcm)

23 tháng 4 2018

Ta có: abcd = 1000a + 100b + 10c + d

          abcd = 1000a + 96b + 4b + 8c + 2c + d

          abcd = 1000a + 96b + 8c + ( 4b + 2c + d )

Ta thấy: 1000a = 8.125.a chia hết cho 8

             96b = 8.12.b chia hết cho 8

             8c chia hết cho 8

             ( 4b + 2c + d ) chia hết cho 8 ( gt )

=> 100a + 96b + 8c + ( 4b + 2c + d ) chia hết cho 8

=> abcd chia hết cho 8

=> Đpcm

16 tháng 8 2020

a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2

+) \(p\equiv2\left(mod3\right)\)

\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)

\(\Rightarrow p+4⋮3\)

Mà \(p+4>3\) nên \(p+4\) là hợp số   (loại)

\(\Rightarrow p\equiv1\left(mod3\right)\)

\(\Rightarrow p+8\equiv9\left(mod3\right)\)

\(\Rightarrow p+8⋮3\)

Vì p + 8 > 3 

\(\Rightarrow\)p + 8 là hợp số   (đpcm)

b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!

Ta có: \(\overline{abcd}=1000a+100b+10c+d\)

                       \(=4b+2c+d+1000a+96b+8c\)

Mà \(1000a⋮8\)\(96b⋮8\)và \(8c⋮8\)

\(\Rightarrow4b+2c+d⋮8\)

\(\Rightarrow\overline{abcd}⋮8\)  (đpcm)

16 tháng 8 2020

Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0

Với p = 3k + 2

=> p + 4 = 3k + 6 chia hết cho 3

p + 4 > 3 => p + 4 là hợp số

=> p = 3k + 2   (loại)

=> p = 3k + 1

=> p + 8 = 3k + 9 chia hết cho 3

Mà p + 8 > 3 nên p + 8 là hợp số  (đpcm)