\(5^2\)+\(5^3\)+.......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(A=5+5^2+5^3+5^4+........+5^{2010}\)

A = ( 1 + 5 + 52 ) + ............ + ( 52008 + 52009 + 52010 )

A = 31 + ......... + 31( 1 + 5 + 5)

Mà 31\(⋮\)31 => A \(⋮\)31 ( đpcm )

14 tháng 10 2017

đề bài sai rồi

16 tháng 10 2017

\(A=5+5^2+5^3+...+5^8\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^6.30\)

Vì 30\(⋮\)30

\(\Rightarrow A⋮30\)\(\Rightarrow A\in B\left(30\right)\)

2 tháng 10 2016

a, \(M=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow5M=5^2+5^3+5^4+...+5^{101}\)

\(\Rightarrow5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)

\(\Rightarrow4M=5^{101}-5\)

\(\Rightarrow M=\frac{5^{101}-5}{4}\)

Vậy : \(M=\frac{5^{101}-5}{4}\)

2 tháng 10 2016

bằng ?

 

2 tháng 10 2016

a) \(M=5+5^2+5^3+...+5^{100}\)

=> \(5M=\left(5+5^2+5^3+...+5^{100}\right).5\)

            = \(5^2+5^3+5^4+...+5^{101}\)

=> \(5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)

=> \(4M=5^{101}-5\)

=> \(M=\frac{5^{101}-5}{4}\)

 

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

6 tháng 8 2018

\(C=5+5^2+5^3+5^4+...+5^8\)

     \(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^7+5^8\right)\)

      \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+....+5^6.\left(5+5^2\right)\)

       \(=30+5^2.30+...+5^6.30\)

        \(=30.\left(1+5^2+...+5^6\right)⋮30\)

Vậy C là bội của 30 (ĐPCM)

6 tháng 8 2018

ta có: C = 5 + 5^2 + 5^3 + 5^4+...+ 5^8

C = (5+5^2) + (5^3+5^4) + ...+ (5^7+5^8)

C = 30 + 5^2.(5+5^2) + ...+ 5^6.(5+5^2)

C = 30 + 5^2 .30 + ...+ 5^6.30

C = 30.(1+5^2+...+5^6) chia hết cho 30

=> C là bội của 30

13 tháng 6 2018

Ta có:\(\dfrac{31}{2}\).\(\dfrac{32}{2}\).\(\dfrac{33}{2}\).....\(\dfrac{60}{2}\)

=\(\dfrac{31.32.33.....60}{2^{30}}\)

=\(\dfrac{\left(1.2.3.....30\right).\left(31.32.33.....60\right)}{\left(1.2.3.....30\right).2^{30}}\)

=\(\dfrac{1.2.3.....60}{2.4.6.....60}\)

=\(\dfrac{\left(1.3.5.....59\right).\left(2.4.6.....60\right)}{2.4.6.....60}\)

=1.3.5.....59

Vậy (đpcm)

16 tháng 7 2018

55 - 54 + 53

= 53 ( 25 - 5 + 1 )

= 53. 21

Mà 21 ⋮ 7 ⇒ 55 - 54 + 53 ⋮ 7