Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 155 = 5.31 ta chứng minh A chia hết cho 5 và 31
+ Chứng minh A chia hết cho 5
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(=15\left(2+2^5+...+2^{97}\right)=3.5.\left(2+2^5+...+2^{97}\right)\)
\(\Rightarrow A⋮5\left(1\right)\)
+ Chứng minh A chia hết cho 31
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(=31\left(2+2^6+...+2^{96}\right)\)
\(\Rightarrow A⋮31\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A⋮\left(31.5\right)hayA⋮155\)
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
a = 2 + 22 +23+........................+ 2100 chia hết cho 62
a = [ 2 + 22 +23+.24+25 ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ]
a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ]
a= 62 . [ 210 + 215 + 220 +......................+ 2100 ]
Mà 62 chia hết cho 62 => 62 . [ 210 + 215 + 220 +......................+ 2100 ] hay a chia hết cho 62
a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)
= 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)
= 62+2^5.62+....+2^95.62
= 62.(1+2^5+....+2^95) chia hết cho 62
=> ĐPCM
k mk nha
S = (2^ 1+2^ 2 )+(2^ 3+2^ 4 )+...+(2^ 99+2^ 100 )
S = 2.(1+2)+2^ 3 .(1+2)+...+2 ^99 .(1+2)
S = 2.3+2 ^3 .3+...+2 ^99 .3
S = 3.(2+2^ 3+...+2^ 99 ) =>
S chia hết cho 3
S = (2^ 1+2^ 2+2^ 3+2 ^4 )+(2^ 5+2^ 6+2^ 7+2 ^8 )+...+(2^ 97+2^ 98+2^ 99+2 ^100 )
S = 2.(1+2+4+16)+2^ 5 .(1+2+4+16)+...+2^ 97 .(1+2+4+16) S = 2.15+2^ 5 .15+...+2^ 97 .15
S = 15.(2+2^ 5+...+2^ 97 ) =>
S chia hết cho 15
nì !!!!!! chinh :)
Đầu tiên bn phải chứng minh chia hết cho 5 và 31 vì 5 và 31 là 2 số nguyên tố cùng nhau
Chứng minh chia hết cho 5
2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^97(1+2+2^2+2^3)
=2.15+2^5.15+....+2^97.15 suy ra chia hết cho 5 vì 15 chia hết cho Tương tự cx làm chia hết cho 31 lần lượt là
2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)+…+2^96(1+2+2^2+2^3+2^4)
=2.31+2^6.31+2^96.41 suy ra chia hết cho 31 mà 31 và 5 là hai số nguyên tố cùng nhau nên nó chia hết cho 31.5=155
- Ôi <3