K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

11 tháng 8 2017

a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=0\)

\(\Leftrightarrow0=0\) ( đpcm) .

b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2a^3-6ab^2=0\)

\(\Leftrightarrow0=0\) ( luôn đúng )

Vậy đẳng thức được chứng minh.

11 tháng 8 2017

Làm cách khác với "thị nở" :v.

a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2a\left(a^2+3b^2\right)\)

\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)

\(=2a\left(a^2+3b^2\right)=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2b\left(b^2+3a^2\right)\)

\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)=2b\left(b^1+3a^2\right)\)\(=2b^2\left(b^2+3a^2\right)=2b^2\left(b^2+3a^2\right)\)

16 tháng 9 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

k nha

10 tháng 4 2018

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

28 tháng 6 2017

a.\(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=o\)

\(\Leftrightarrow0=0\)(đpcm)

b.\(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3-6a^2b=o\)

\(\Leftrightarrow0=0\)luôn đúng

Vậy đẳng thức được chứng minh

27 tháng 3 2018

Bài 1:

a). Ta có: a < b

=> -6a > -6b

mà 3 > 1

=> \(3-6a>1-6b\)

b)

Ta có: a < b

=> a - 2 < b - 2

=> \(7\left(a-2\right)< 7\left(b-2\right)\)

c)

Ta có: a < b

=> -2a > -2b

=> 1 - 2a > 1 - 2b

\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)

1 tháng 4 2018

Bài 2:

a) Ta có:

a+23<b+23

\(\Leftrightarrow a< b\)

b) Ta có:

\(-12a>-12b\)

\(\Leftrightarrow a< b\)

c) Ta có:

\(5a-6\ge5b-6\)

\(a\ge b\)

d) Ta có:

\(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)

\(\Leftrightarrow-2a+3\le-2b+3\)

\(\Leftrightarrow a\ge b\)