Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm thế này nha bn
a) ab + ba = 10a + b + 10b + b = 11a + 11b = 11(a+b) chia hết 11
b) ab - ba = 10a + b - (10b - a) = 10a + b - 10b - a = 9a - 9b = 9(a-b) chia hết 9
c) abba = 1000a + 100b + 10b + a = 1001a + 110b = 11(91a+10b) chia hết 11
mik nha bn
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) chia hết cho 11
ab - ba = (10a + b) - (10b + a) = 10a + b - 10b - a = 9a + 9b = 9(a + b) chia hết cho 9
abba = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
T nhé
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
a, Ta có: abba = 1000a +100b + 10b + a = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11
b, Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b) chia hết cho 9
Vậy ab - ba chia hết cho 9.
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)
Ta có : ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) chia hết cho 11
Ta có: câu 1 : ab + ba = 10a + b +10b +a
=11a +11b =11(a+b)
=> ab + ba chia hết cho 11
câu 2 : ab - ba = 10a +b -10b -a
=9a - 9b =9(a-b) với điều kiện a >b
=> ab - ba chia hết cho 9
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)