K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

a, = (7^1+7^2)+(7^3+7^4)+(7^5+7^6)

    = 7.(1+7)+7^3.(1+7)+7^5.(1+7)

    = 7.8+7^3.8+7^5.8 = 8. (7+7^3+7^5) chia hết cho 8

k mk nha

= (7+72)+(73+74)+(75+76)

= 7(1+7)+73(1+7)+75(1+7)

= 7.8 + 73.8 +75.8

=8.(7+73+75) chia hết cho 8
 

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

13 tháng 11 2017

71+72+73+74+75+76

=7.(7+1)    + \(7^3.\left(1+7\right)\)+  \(7^5.\left(1+7\right)\)

=\(7.8+7^3.8+7^5.8\)

=\(8.\left(7+7^3+7^5\right)\)

vì 8 \(⋮\)8 nên \(8.\left(7+7^3+7^5\right)⋮8\)

nên \(7^1+7^2+7^3+7^4+7^5+7^6\)chia hết cho 8

13 tháng 11 2017

71+72+73+74+75+76

=(71+72) + (73+74) + (75+76)

=7(7+1) + 73(1+7) + 75(1+7)

=7x8 + 73x8 + 75x8

(vì mỗi số hạng chia hết cho 8)

16 tháng 8 2017

a,Tính S

S=70+72+74+....+72018

72.S=72.(70+72+74+...+72018)

72.S=72+74+76+...+72020

Mà S=70+74+76+....+72018

=>72.S-S=72020-1

Câu B để mk suy nghĩ đã

22 tháng 8 2017

Phần b) :

72020 - 1 = (72)1010 - 1 = 491010 - 1

Theo tính chât tìm sô tận cùng thì số có tận cùng là 9 và số mũ chẵn 

=> Số tận cùng của nó sẽ là 1

Với số tận cùng = 1 mà trừ cho 1 = . . .1 - 1 = . . .0

Mà số chia hết cho 5 có số tận cùng = 0 hoặc 5

=> S chia hết cho 5

P/s : Mk chỉ dựa vào câu a của bạn vì mk ko tìm đc đáp án

29 tháng 6 2016

Đề đầy đủ thế này :

Chúng tỏ rằng : 7+ 7+ 73 + 74 + 75 + 76 chia hết cho 50 .

Đúng không bạn ?

29 tháng 6 2016

Bạn viết thiếu đề rồi

27 tháng 12 2016

Ta có: \(A=7^3+7^4+7^5+7^6+...+7^{98}\)

\(\Rightarrow A=\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{97}+7^{98}\right)\)

\(\Rightarrow A=7^3\left(1+7\right)+7^5\left(1+7\right)+...+7^{97}\left(1+7\right)\)

\(\Rightarrow A=7^3.8+7^5.8+...+7^{97}.8\)

\(\Rightarrow A=\left(7^3+7^5+...+7^{97}\right).8⋮8\)

\(\Rightarrow A⋮8\)

Vậy \(A⋮8\)

27 tháng 12 2016

tớ ko hiểu đoạn số 3 từ trên xuống dưới chỉ hộ mk vs

28 tháng 12 2017

Câu 1/     \(A=1+7+7^2+7^3+7^4+7^5\)       Nhân hai vế với 7 được :

\(7A=7+7^2+7^3+7^4+7^5+7^6\)   Do đó : \(6A=7^6-1\)  (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)

Suy ra :  \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)

(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8

Câu 2/  Chứng tỏ :  (2n + 5) chia hết cho (n + 1)  .Câu này đề sai .Khi n = 1 đã sai rồi . 

Câu 3 : Giải tương tự câu 1

7 tháng 1 2018

cái đó mình chịu

7 tháng 1 2018

ukm ko sao 

16 tháng 10 2016

A=(5+5^2)+(5^3+5^4)+...(5^299+5^300)
A=5(1+5)+5^2(1+5)+...+5^299(1+5)
A=5.6+5^2.6+...+5^299.6 => Achia hết cho 6.
Tường tự phần A nhóm 3 số với nhau chia hết cho 31
phần B đường nhiên sẽ chia hết cho 7 vì mỗi số hạng đều chia hết cho 7, nhóm 2 số với nhau chia hết cho 8

16 tháng 10 2016

cảm ơn bạn nhiều