Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
720 + 4911 + 3437 = ( 71 )20 + ( 72 )11 + ( 73 )7 =720 + 721 + 722 = 720 ( 1 + 7 + 72 ) = 720.57
Vì 57 chia hết cho 57 nên 720 .57 chia hết cho 57
=> 720 + 4911 + 3437 chia hết cho 57 ( đpcm )
\(7^{20}+49^{11}+343^7\)
\(=7^{20}+\left(7^2\right)^{11}+\left(7^3\right)^7\)
\(=7^{20}+7^{22}+7^{21}\)
\(=7^{20}\left(1+7^2+7\right)\)
\(=7^{20}.57⋮57\)
\(\Leftrightarrowđpcm\)
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)
720 + 4911 + 3437
= 720 + (72)11 + (73)7
= 720 + 722 + 721
= 720 + 720 + 2 + 720 + 1
= 720 + 720.72 + 720.7
= 720(1 + 72 + 7)
= 720.57
Vì 57 ⋮ 57 nên 720.57 ⋮ 57
Hay 720 + 4911 + 3437 ⋮ 57
a) \(7^{n+4}-7^n\)
\(=7^n\left(7^4-1\right)\)
\(=7^n.2400⋮100\)
b) \(20^5\equiv1\left(mod11\right)\)
\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)
\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)
\(\Rightarrow20^5-1⋮11\)
Ta có: 720+4911+3437= 720+(72)11+ (73)7
= 720+722+721=720.(1+7+72)=720.57 chia hết cho 57
\(\Rightarrow\)720+4911+3437 chia hết cho 57