Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 7^4 = 2401 , 7^6 = 117649 , 7^8 = ...1( có c/ số tận cùng là 1 ) , 7^10 = ...9(có c/ số tận cùng là 9) ...
Ta thấy : các số mũ của 7 là số chia hết cho 2 thì có tận cùng là 9
các số mũ của 7 là số chia hết cho 4 thì có tận cùng là 1
2014 chia hết cho 2, k chia hết cho 4
=> 7 ^ 2014 có tận cùng là 9 mà 9 + 1 = 10 => 7^2014 + 1 chia hết cho 10
Ta có: 74 có chữ số tận cùng là 1
=> (74)503 cũng có chữ số tận cùng là 1
hay 72012 có chữ số tận cùng là 1
Có 72 có chữ số tận cùng là 9
=> 72014+1 có chữ số tận cùng là 10
Vậy 72014 +1 chia hết cho 10
Gọi tổng đó là A:
A = 1 + 3 + 32 + 33 + ... + 399
A = ( 1 + 3 + 32 + 33 ) + ... + ( 396 + 397 + 398 + 399 )
A = 40 + ... + 396 · ( 1 + 3 + 32 + 33 )
A = 40 + ... + 396 · 40 \(⋮40\)
=> A \(⋮40\)
\(1-7+7^2-7^3+...+7^{2014}-7^{2015}\)
\(=\left(1-7\right)+7^2\left(1-7\right)+...+7^{2014}\left(1-7\right)\)
\(=\left(1-7\right)\left(1+7^2+7^4+...+7^{2014}\right)\)
\(=\left(1-7\right)\left[\left(1+7^2\right)+7^4\left(1+7^2\right)+...+7^{2012}\left(1+7^2\right)\right]\)
\(=\left(1-7\right)\left(1+7^2\right)+\left(1+7^4+7^8+...+7^{2012}\right)\)
vì \(\left(1+7^2\right)⋮25\) \(\Rightarrow\left(1-7\right)\left(1+7^2\right)+\left(1+7^4+7^8+...+7^{2012}\right)⋮25\)
\(\Rightarrow\left(1-7+7^2-7^3+...+7^{2014}-7^{2015}\right)⋮25\)
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
thử: 9^2=1
9^3=729
9^4=...1
vậy t có dạng 9 lũy thừa số lẻ sẽ có chữ số tận cùng là 9 là 9 lũy thừa số chẵn có chữ số tận cùng là 1 = > 9^11=........9
=>9^11+1=..............0 nên chia hết cho 2 và 5, lưu ý "..........." ở đây tức là các chữ số mà mình ko cần tính ra, chỉ cần xét chữ số tận cùng.
ukm bài này
làm rồi
để nghỉ lại đã có thời gian thì làm hộ cho nha
Ta có :
E = 62 + 63 + 64 + ... + 661
=> E = ( 62 + 63 ) + ( 64 + 65 ) + ... + ( 660 + 661 )
=> E = ( 62 + 63 ) + 62 . ( 62 + 63 ) + ... + 658 . ( 62 + 63 )
=> E = 252 + 62 . 252 + ... + 658 . 252
=> E = 7 . 36 + 62 . 7 . 36 + ... + 658 . 7 . 36
=> E = 7 . ( 36 + 62 . 36 + ... + 658 . 36 ) ⋮ 7
Ta có :
E = 62 + 63 + 64 + ... + 661 ( có 20 số hạng )
=> E = ( 62 + 63 + 64 ) + ( 65 + 66 + 67 ) + ... + ( 659 + 660 + 661 ) ( có đủ 20 nhóm )
=> E = ( 62 + 63 + 64 ) + 63 . ( 62 + 63 + 64 ) + ... + 657 . ( 62 + 63 + 64 )
=> E = 1548 + 63 . 1548 + ... + 657 . 1548
=> E = 36 . 43 + 63 . 36 . 43 + ... + 657 . 36 . 43
=> E = 43 . ( 36 + 63 . 36 + ... + 657 . 36 ) ⋮ 43
72014 không thể chia hết cho 10
Ta có: 74 có chữ số tận cùng là 1
=> (74)503 cũng có chữ số tận cùng là 1
Hay 72012 có chữ số tận cùng là 1
Có 72 có chữ số tận cùng là 9
=> 72014 có chữ số tận cùng là 10
=> 72014 chia hết cho 10