Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Giải:
Gọi \(d=UCLN\left(3n+2;5n+3\right)\)
Ta có:
\(3n+2⋮d\)
\(5n+3⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+10⋮d\)
\(15n+9⋮d\)
\(\Rightarrow15n+10-15n+9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)
\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau
Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n+2,5n+3)
Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .
Đặt n2+3n+5 = (*)
Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )
Vậy với n=1 đúng
Giả sử (*) đúng với n=k
=> (*) <=> k2+3k+5
Ta cần c/m (*) đúng với n = k+1
Thật vậy với n= k+1
=> (*) <=> (k+1)2+3(k+1)+5
tự viết tiếp
Cả 2 số này đều là số chẵn lớn hơn 2, vậy chúng không thể là số nguyên tố
Ta có:
\(2009^{100}+1-2009^{100}+1=2009^{100}-2009^{100}+1+1=2\)
=>\(2009^{100}+1\) và \(2009^{100}-1\) khác tính chẵn lẻ
=>\(2009^{100}+1\) hoặc \(2009^{100}-1\) là số chẵn
Mà 2 số trên đều lớn hơn 2
=>Một trong 2 số trên là hợp số(ĐPCM)
Đặt d là WCLN(3n+1;5n+2)
Ta có 3n+1=5(3n+1)=15n+5
5n+2=3(5n+2)=15n+6
=> d=(15n+6)-(15n+5)
=>d=1 =>5 không là ước của (3n+1;5n+2)