Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De \(\frac{5n+3}{3n+2}\)la phan so toi gian (n thuoc N)
thi 5n+3 chia het 3n+2
suy ra 3n+2 chia het 3n+2 suy ra 15n+10 chia het 3n+2
va 5n+3 chia het 3n+2 suy ra 15n+9 chia het 3n+2
suy ra ( 15n+10 - 15n+9 ) chia het 3n+2
suy ra 1 chia het 3n+2
suy ra 3n+2 thuoc uoc cua 1 la 1 ,-1
vi n thuoc N nen 3n+2=1
suy ra 3n=1-2
suy ra n=-1/3( loai)
vay x thuoc rong
Ta có 3n và 3n+1 nguyên tố cùng nhau (vì 3n và 3n+1 là hai số tự nhiên liên tiếp)
=> 3n và 3n+1 chỉ cùng chia hết cho 1
=>\(\frac{3n}{3n+1}\)là phân số tối giản.
Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)
=> 3a+1-3a chia hết chi d
=> 1 chia hết cho d
mà d thuộc N* => d=1
=> \(\frac{3n}{3n+1}\)là phân số tối giản
3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản
Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
GỌI ƯCLN(3n;3n+1)=d
=>3n chia hết cho d; 3n+1chia hết cho d
=>3n+1-3n=1chia hết cho d=> d=1
=> 3n/3n+1 là phân số tối giản
Gọi ƯCLN 3n;3n+1 là d
=> 3n chia hết cho d;3n+1 chia hết cho d
=> 1chia hết cho d=> d=1
=> 3n và 3n+1 là ntố cùng nhau
=> phân số tối giản
mình pt làm câu sau thôi:
đặt UCLN của (2n+1, 3n+1) d
=> 2n+1 chia hết cho d và 3n+1 chia hết cho d
=> 6n+3 chia hết cho d và 6n+2 chia hết cho d
=> 1chia hết cho d và d=1
bài tương tự nha bn
Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?
gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.
Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow\)\(\left(-3\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Lại có :
\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)
\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)
\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)
Chúc bạn học tốt ~