Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
a) Vì \(3^{4n+1}\) luôn có chữ số tận cùng là 3
nên \(3^{4n+1}+2⋮5\)(Vì có chữ số tận cùng là 5)
c) Vì \(9^{2n+1}\) luôn có chữ số tận cùng là 9
nên \(9^{2n+1}+1⋮10\)(Vì có chữ số tận cùng là 0)
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
Chứng minh chia hết cho 2:
Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)
Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)
Theo Fecma vì 11 là số nguyên tố nên
\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)
Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)
\(\Rightarrow2^{4n+1}=10k+2\)
Kết hợp với (2) ta được
\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)
Tương tự ta có:
\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)
Ta lại có:
\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10l+3\)
Kết hợp với (4) ta được
\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)
Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)