Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+3) chia hết cho (x+1)
=> [(x+1)+2] chia hết cho x+1
có x+1 chia hết cho x+1
=> 2 chia hết cho x + 1
=> x+1 thuộc Ư (2)
=> x+1 thuộc {-2;-1;1;2}
=> x thuộc {-2 - 1 ; -1 - 1 ; 1 - 1 ; 2-1}
=> x thuộc {-3;-2;0;1}
vậy...........
Vì \(2x+3y⋮17\Rightarrow4.\left(2x+3y\right)⋮17\)\(=\left(8x+12y\right)\)
Vì \(\left(8x+12y\right)⋮17\)và \(9x+5y⋮17\)\(\Rightarrow\left(8x+12y\right)+\left(9x+5y\right)⋮17\)\(\Rightarrow17x+17y⋮17\)
\(\Rightarrow17\left(x+y\right)⋮17\)vì do \(17⋮17\)nên\(17\left(x+y\right)⋮17\)
=> Nếu \(2x+3y⋮17\)thì \(9x+5y⋮17\)
k mình nhé.
CHÚC BẠN HỌC GIỎI.
Ta có: 9x+5y⋮ 17
=> 4(9x+5y)⋮ 17
<=>36x+20y⋮ 17
<=> 2x+34x+3y+17y⋮ 17
=>(2x+3y)+(34x+17y)⋮ 17
Vì 34x+17y⋮ 17
nên 2x+3y⋮ 17
Chúc bạn học tốt
Xét 4(2x+3y)+1(9x+5y)
=8x+12y+9x+5y
=(8x+9x)+(12y+5y)
=17x+17y
=17(x+y)
Có:17(x+y)chia hết cho 17 ;2x+3y chia hết cho 17
nên 9x+5y chia hết cho 17
Vậ :2x+3y chia hết cho 17 thì 9x+5y cũng sẽ chia hết cho 17
TH1:2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
Ta có:4(2x+3y)+(9x+5y)
=8x+12y+9x+5y
=17x+17y chia hết cho 17
Mà 4(2x+3y) chia hết cho 17 nên 9x+5y chia hết cho 17
TH2:9x+5y chia hết cho 7 thì 2x+3y chia hết cho 17
Ta có:(9x+5y)+4(2x+3y)
=9x+5y+8x+12y
=17x+17y chia hết cho 17
Mà 9x+5y chia hết cho 17 nên 4(2x+3y) chia hết cho 17
Vì 4 không chia hết cho 17 nên 2x+3y chia hết cho 17
Vậy 2x+3y chia hết cho 17<=>9x+5y chia hết cho 17(đpcm)
Trả lời:
1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)
\(=3^{60}-3^{56}\)
\(=3^{55}.\left(3^5-3\right)\)
\(=3^{55}.\left(243-3\right)\)
\(=3^{55}\times240\)\(⋮240\)
Vậy \(27^{20}-3^{56}\)chia hết cho 240
2, Ta có: \(3a+7b⋮19\)
\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)
\(\Leftrightarrow6a+14b⋮19\)
\(\Leftrightarrow6a+33b-19b⋮19\)
\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)
Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)
Vậy \(2a+11b\)chia hết cho 19
\(\left(2x+3y\right)⋮17\Leftrightarrow13\left(2x+3y\right)⋮17\) (vì \(\left(13,17\right)=1\))
\(\Leftrightarrow\left(26x-17x+39y-2.17y\right)⋮17\)
\(\Leftrightarrow\left(9x+5y\right)⋮17\)
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17
Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
Hay 26x + 39 y chia hết cho 17
Mà 17x và 34 y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17
Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
k mk nha