Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)
\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)
\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)
...
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)
Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:
\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)
\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)
Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)
\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}< \dfrac{1}{5}\)
=\(\dfrac{3}{3}\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{37.40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)\)
=\(\dfrac{3}{40}< \dfrac{1}{3}\)
1)
A= \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{39}-\frac{1}{40}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{40}\)
=> A= 27/120
A = \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\)
= \(\frac{1}{3}-\frac{1}{40}\)
= \(\frac{37}{120}\)
B = \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{37.40}\)
= \(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
= \(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{40}\right)\)
= \(\frac{1}{3}.\frac{9}{40}=\frac{3}{40}\)
C = \(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{37.40}\)
= \(\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
= \(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{40}\right)\)
= \(\frac{2}{3}.\frac{9}{40}=\frac{3}{20}\)
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{2014\cdot2017}\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(\frac{3}{1\cdot3}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{2014\cdot2017}\right)\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{2017}\right)=\frac{1}{3}-\frac{1}{6051}< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
Ta có :
\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2014.2017}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{3}.\frac{2016}{2017}< \frac{1}{3}\left(đpcm\right)\)
1/1*4+1/4*7+1/7*10+...+1/2010*2013=A
3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013
3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013
3A=1-1/2013<1
Suy ra : A <1/3
Nho k cho minh voi nhe
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}\)
Vì \(1-\frac{1}{46}\) < 1
=> \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{43}-\frac{1}{46}..\)
\(S=1-\frac{1}{46}< 1\)
VẬY S<1
\(S=\frac{3}{1.4} +\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
=> S<1 (ĐCCM)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy S<1
ai tk mk thì mk tk lại