Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 4 + 42 + 43 + ... + 42000
A = (1 + 4 + 42) + (43 + 44 + 45) + ... + (41998 + 41999 + 42000)
A = 21 + 43.(1 + 4 + 42) + ... + 41998.(1 + 4 + 42)
A = 21 + 43.21 + ... + 41998.21
A = 21.(1 + 43 + ... + 41998)
Vì 21 chia hết cho 21 => 21.(1 + 43 + ... + 41998) chia hết cho 21 hay A chia hết cho 21 (đpcm)
nhóm 3 số vào 1 nhóm tính số số hạng rồi đặt thừa sô chung là 21 thì chia hết cho 21
a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015
3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)
2S=3^2015-3^0
b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!
Tui trả lời câu b nè:
S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)
Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha
Các tổng trên chia hết cho 7 nên S chia hết cho 7
Đảm bảo là đúng!!! :)
Gọi phần a, là A,ta có:
A=1+4+42+43+...+42000
4.A=4.(1+4+42+...+42000)
4.A=4+42+43+44+...+42001
4.A-A=(4+42+43+...+42001)-(1+4+42+...+42000)
3.A=4+42+43+...+42001 -1-4-42-...-42000
3.A=42001-1
A=(42001-1):3
K CHO MIK NHÉ !
\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)=\left(4+4^2\right)\left(4^2+...+4^{22}\right)\)
\(=20\left(4^2+...+4^{22}\right)\)maf \(\left(4^2+...+4^{22}\right)>0\Rightarrow20\left(4^2+...+4^{22}\right)⋮20\Rightarrow A⋮20\)
Tuowng Tuwj nhes
\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^4\right)\)
\(=\left(4+4^2+4^3\right)+4^3\left(4+4^2+4^3\right)+...+4^{21}\left(4+4^2+4^3\right)\)
\(=84+4^3.84+...+4^{21}.84=84\left(1+4^3+...+4^{21}\right)\)
\(84⋮21;1+4^3+...+4^{21}\ne0\Rightarrow A⋮21\)
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+4^{18}\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=5460+...+4^{18}.5460=5460\left(1+...+4^{18}\right)\)
\(5460⋮420;1+...+4^{18}\ne0\Rightarrow A⋮420\)
\(1+4+4^2+4^3+...+4^{58}+4^{59}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(=5+\left(4^2.1+4^2.4\right)+....+\left(4^{58}.1+4^{58}.4\right)\)
\(=5+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(=1.5+4^2.5+....+4^{58}.5\)
\(=\left(1+4^2+...+4^{58}\right).5⋮5\)
1+4+42+43+.........+42012
=(1+4+42)+43.(1+4+42)+............+42010.(1+4+42)
=21+43.21+............+42010.21
=21.(1+43+.......+42010)
Vì 21 chia hết cho 21
=> 21.(1+43+.....+42010) chia hết cho 21
Vậy 1+4+42+43+......+42012 chia hết cho 21
Chúc bn hok tốt nhé
#han sara#
\(1+4+4^2+4^3+4^4+.....+4^{2012}.\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+\left(4^6+4^7+4^8\right)+.....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+4^3\cdot\left(1+4+4^2\right)+4^6\cdot\left(1+4+4^2\right)+.....+4^{2010}\cdot\left(1+4+4^2\right)\)
\(=21+4^3\cdot21+4^6\cdot21+.....+4^{2010}\cdot21\)
\(=21\left(1+4^3+4^6+...+4^{2010}\right)\)
Có \(21\left(1+4^3+4^6+...+4^{2010}\right)⋮4\)
\(\Rightarrow1+4+4^2+4^3+4^4+.....+4^{2012}⋮4\)\(\left(đpcm\right)\)
Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bạn nhóm 3 số vào