\(< \frac{1}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

1/3^2 + 1/4^2 + 1/5^2 + ... + 1/100^2 < 1/2nhân3 + 1/3nhân4 + 1/4nhân5 + ... + 1/99nhân100

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100 

= 1/2 - 1/100 < 1/2 

=> ĐPCM

8 tháng 8 2020

tại vì có cộng bao nhiêu số thì khi rút gọn cung ko thể lớn hơn 4/9 vì 4/9 còn có thể là 40000000/90000000 nên là ko thể

8 tháng 8 2020

Ta có :\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4034}< \frac{1}{2}< \frac{4}{9}\)(đpcm)

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

6 tháng 2 2020

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ ...\\ \frac{1}{n^2}< \frac{1}{\left(n-1\right)\cdot n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\left(\text{với }n\in N;n\ge2\right)\)

26 tháng 3 2019

C/M công thức tổng quát:\(n^3>n^3-n\Rightarrow\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+.....+\frac{1}{2017^3}\)

Áp dụng vào bài toán,ta được:\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{2016\cdot2017\cdot2018}\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+....+\frac{1}{2016\cdot2017}-\frac{1}{2017\cdot2018}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2017\cdot2018}\right)\)

\(=\frac{1}{4}-\frac{1}{2\cdot2017\cdot2018}\)

\(< \frac{1}{2^2}^{ĐPCM}\)

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

9 tháng 8 2016

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\)

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{n-1}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{n-1}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\right)\)

\(A=1-\frac{1}{2^n}< 1\)với mọi n -->Đpcm

25 tháng 9 2020

a/

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(A=2A-A=1-\frac{1}{2^{100}}< 1\)

b/

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)