Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
Ta có:
\(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{99}+3^{100}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(\Rightarrow A=\left(1+3+...+3^{99}\right)\left(1+3\right)\)
\(\Rightarrow A=Q.4\)
\(\Rightarrow A⋮4\)
Vậy \(A=1+3+3^2+3^3+...+3^{100}⋮4\) (Đpcm)
\(A=1+3+...+3^{100}\)
A có 101 số hạng do vậy nếu ta ghép 2 số hạng ta được
\(A=1+3\left(1+3\right)+...+3^{99}\left(1+3\right)\)như vậy
Vậy A chia cho 4 luôn dư 1
Kết luận đề Sai
Giải :
M = 1 + 4 + 4^2 + 4^3 +...+ 4^100
= 1 + ( 4+4^2) + ( 4^3+4 ^4) +... + ( 4^99+4^100)
= 1+4 . (1+4) + 4^3 . ( 1+4) +...+4^99 . (1+4)
=1+4.5 + 4^3.5+... + 4^99.5
= 1 +5. ( 4 + 4^3+...+4^99)
Vì 5. ( 4+ 4^3 +...+ 4^99) chia hết cho 5.
Mà 1 không chia hết cho 5.
=> M không chia hết cho 5.
C = 3 + 32 + 33 + 34 + .... + 3100
C = (3 + 32 + 33 + 34) + ....... + (397 + 398 + 399 +3100)
C = 3(1 + 3 + 32 + 33) + ... + 397 (1 + 3 + 32 + 33)
C = 3. 40 + ... + 397 . 40
C = 40(3 + ... + 397) chia hết cho 40
C=3+3^2+3^3+....+3^100 C=(3+3^2+3^3+3^4)+........+(3^97+3^98+3^99+3^100) C=3(1+3+3^2+3^3)+..........+3^97( 1+3+3^2+3^3) C=3*40+.......+3^97*40 C=40(3+.....+3^97) chia hết cho40 nhớ l i k e cho mình nha
3
Tổng trên sẽ bằng:
\(\left(70000+1\right).70000:2=70001.35000⋮100\)
Vậy ta có đpcm.