K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Đặt A = 1 + 2 + 22 + 2+ ..... + 299 

=> 2A = 2 + 22 + 2+ ..... + 2100 

=> 2A - A = 2100 - 1

=> A =  2100 - 1 (đpcm)

30 tháng 9 2017

Đặt \(S=1+2+2^2+2^3+......+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{99}+2^{100}\)

\(\Rightarrow2S-S=2+2^2+2^3+...+2^{99}+2^{100}-\left(1+2+2^2+2^3+...+2^{99}\right)\)

\(\Rightarrow S=2+2^2+2^3+...+2^{99}+2^{100}-1-2-2^2-2^3-...-2^{99}\)

\(\Rightarrow S=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{99}-2^{99}\right)+\left(2^{100}-1\right)\)

\(\Rightarrow S=2^{100}-1\)

8 tháng 3 2020

Đặt A=\(2+2^2+2^3+...+2^{99}\)
2A=\(2^2+2^3+2^4+...+2^{100}\)
=>2A-A=(\(2^2+2^3+2^4+...+2^{100}\))-(\(2+2^2+2^3+...+2^{99}\))
=>A=\(2^{100}-2\)
Thay vào đề bài :
\(1+2^{100}-2=2^{100}-1\)
=>\(\left(1-2\right)+2^{100}=2^{100}-1\)
=>

8 tháng 3 2020

=>\(-1+2^{100}=2^{100}-1\)
=>\(2^{100}-1=2^{100}-1\left(đpcm\right)\)

18 tháng 5 2017

Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

Mà \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)

1 tháng 8 2016

Chứng tỏ rằng ??????

1 tháng 8 2016

Chứng tỏ rằng= Chứng minh rằng

10 tháng 8 2016

Ta có : 

A=2 + 2+ 2+ ...... + 299 + 2100

=> A = (2 + 22) + (2+ 24) + ...... + (299 + 2100)

=> A = 2.(1 + 2) + 23.(1 + 2) + .... + 299.(1 + 2)

=> A = 2.3 + 23.3 + .... + 299.3

=> A = 3.(2 + 23 + .... + 299) chia hết cho 3(đpcm)

10 tháng 8 2016

A=2+22+23+24+...+299+2100

=(2+22)+(23+24)+...+(299+2100)

=2.(1+2)+23.(1+2)+...+299.(1+2)

=2.3+23.3+...+299.3

=3.(2+23+...+299) chia hết cho 3

Chúc bạn học giỏi nha!!!!

K cho mik vs nhé toikomuonan

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)