Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 111...11222...22=111..11.10100+2.111....111
Bây giờ ta có chung thừa số 111....11 nên ta đặt chúng ra làm thừa số chung và bằng
111.....11.[10100+2]=111....11.[100...00+2]=111...11.[100..02]=111....11.[3.33..334]=333...33.333...34
Vậy 111...11222...22 là tích của 2 stn liên tiếp
Ta có : \(A=11...122...2=11...100...0+22...2\) ( 100 c/s 1 ; 100 c/s 0 ; 100 c/s 2 )
\(=11...1.\left(100...0+2\right)\) ( 100 c/s 1 ; 100 c/s 0 )
\(=11...1.\left(3.33...34\right)\) ( 100 c/s 1 ; 99 c/s 3 )
\(=33...3.33...34\) ( 100 c/s 3 ; 99 c/s 3 )
Vậy A là tích của hai STN liên tiếp
111.......11222....222\(=\)111.....1 \(.10^n+2222.....2=11111....1.10^n+2\left(1111.....1\right)\)(n chữ số 1)
\(=111......1\left(10^n+2\right)\)(n chữ số 1)
Nhận xét:\(10^n=999.....9+1\)(n chữ số 9)
\(=9999.....9+1\)
đặt a\(=111....1\Rightarrow111....11222......222=a\left(9a+1+2\right)=a\left(9a+3\right)=3a\left(3a+1\right)\)
vì 3a và 3a+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\)111...11222..222 là tích 2 tự nhiên liên tiếp
mình chỉ biết làm 1 cách thôi
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
Lời giải:
Đặt \(\underbrace{111....1}_{100}=a\Rightarrow 9a+1=1\underbrace{000...0}_{100}\)
Khi đó:
\(\underbrace{1111....1}_{100}\underbrace{222....2}=\underbrace{111...1}_{100}\times 1\underbrace{00...0}_{100}+\underbrace{222....2}_{100}\)
\(a(9a+1)+2a=9a^2+3a=3a(3a+1)\) là tích của 2 số
tự nhiên liên tiếp $3a, 3a+1$
Ta có đpcm.