K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

Đặt A = 1 + 7 + 72 + ... + 798

 => A = 70 + 7+ 72 + ... + 798

 => A = ( 70 + 71 + 72 ) + ( 73 + 74 + 75 ) + ... + ( 796 + 797 + 798 )

 => A = 70 . ( 70 + 71 + 7) + 7 . ( 70 + 71 + 7) + ... + 796  . ( 70 + 71 + 7)

 => A = 70 . 57 + 73 . 57 + ... + 796 . 57

 => A = 57 . ( 70 + 73 + ... + 796 ) \(⋮\)57

19 tháng 6 2018

Đặt S = \(1+7+7^2+..........+7^{98}\)

\(\Rightarrow S=7^0+7^1+7^2+.............+7^{98}\)

\(\Rightarrow S=\left(7^0+7^1+7^2\right)+\left(7^3+7^4+7^5\right)+..........+\left(7^{96}+7^{97}+7^{98}\right)\)

\(\Rightarrow S=7^0.\left(7^0+7^1+7^2\right)+7^3.\left(7^0+7^1+7^2\right)+............+7^{96}.\left(7^0+7^1+7^2\right)\)

\(\Rightarrow S=7^0.57+7^3.57+..........+7^{98}.57\)

\(\Rightarrow S=57.\left(7^0+7^3+.........+7^{98}\right)\)

Mà 57 \(⋮\)57 \(\Rightarrow57.\left(7^0+7^3+..........+7^{98}\right)⋮57\)

Vậy tổng S chia hết cho 57

27 tháng 12 2018

6x + 11y chia hết cho 31

=> 6x + 11y + 31y chia hết cho 31 vì 31y chia hết cho 31

=> 6x + 42y chia hết cho 31

=> 6(x + 7y) chia hết cho 31

=> x + 7y chia hết cho 31 vì 6 và 31 là hai số nguyên tố cùng nhau

=> đpcm

10 tháng 12 2017

ta có: abcabc=abcx1000+abcx1=abcx(1000+1)=abcx1001=mà 1001 chia hết cho 11=>abcabc sẽ chia hết cho 11

Ta lại có: 1001 chia hết cho 7=>abcabc sẽ chia hết cho 7

21 tháng 8 2016

1 + 7 + 72 + 73 + ... + 7201

= ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7200 + 7201 )

= ( 1 + 7 ) + 72 . ( 1 + 7 ) + ... + 7200 . ( 1 + 7 )

= 8 + 72 . 8 + ... + 7200 . 8

= 8 . ( 1 + 72 + ... + 7200 ) \(⋮\)8 ( đpcm )

21 tháng 8 2016

Ta có 1+7=8 chia hết cho 8 

Từ 7\(^2\) đến 7\(^{201}\)  có (201-2):1 +1=200

Ta nhốm 4 số (7\(^2\)+7\(^3\)+7\(^4\)+7\(^5\))=19600 \(⋮\)8

Mà 200\(⋮\)4 các nhóm chia hết cho 4

\(\Rightarrow\) biểu thức chia hết cho 8

20 tháng 6 2016

164164

246246

328328

410410

492492

656656

820820

984984

20 tháng 6 2016

ta có:

abc abc=a.100 000 + b.10 000 + c.1 000 + a.100 + b.10 + c

              =a.100 100 + b.10 010 + c.1 001

              =a.9 100.11 + b.910.11 + c.99.11

              =11.(a.9100 + b.910 + c.99)

 mà 11.(a.9100 + b.910 + c.99) chia hết cho 11

vậy abc abc chia hết cho 11(đpcm)

17 tháng 10 2018

 aaa = 111.a nên chia hết ch0 7

17 tháng 10 2018

cậu trả lời tổng quát rõ ràng đi nhé nhanh mình k

29 tháng 8 2018

Gọi A = a + 2b và B = abb

Ta có : B = 100a + 11b và :

100A = 100 . ( a + 2b )

100A = 100a + 200b

=> 100A - B = 100a + 200b - 100a - 11b

=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )

=> 100A - B chia hết cho 7

mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )

29 tháng 8 2018

Cảm ơn bạn nhiều.

12 tháng 12 2018

Gọi 4 số tự nhiên liên tiếp la a+1;a+2;a+3;a+4

-n nếu ếu a chia hết cho 4        ( dpcm)

-nếu a chia 4 dư 1 thi a có dạng :a=4k+1

                                     Xét :a+3=4k+1+3=4k+4=4.(k+1) chia hết cho 4       (1)

-nếu a chia 4 dư 2 thì a có dạng a=4k+2

                                     Xét a+2=4k+2+2=4k+4=4.(k+1) chia hết cho 4      (2)

-nếu a chia 4 dư 3 thì a có dạng a=4k+3

                                     Xét a+1=4k+3+1=4k+4=4.(k+1) chia hết cho 4        (3)

Từ (1)  ;   (2) và (3) suy ra dpcm

7 tháng 7 2017

a) \(7^{15}-7^{14}=7^{14}.7^1-7^{14}.1=7^{14}.\left(7-1\right)=7^{14}.6⋮6\)( Vì \(6⋮6\))
=) \(7^{15}-7^{14}⋮6\left(Đpcm\right)\)
b) \(9^{20}-9^{18}=9^{18}.9^2-9^{18}.1=9^{18}.\left(9^2-1\right)=9^{18}.80⋮10\)( Vì \(80⋮10\))
=) \(9^{20}-9^{18}⋮10\left(Đpcm\right)\)

7 tháng 7 2017

a) Ta có : \(7^{15}-7^{14}=7^{14}.\left(7-1\right)=7^{14}.6\)\(⋮6\)

=> \(7^{15}-7^{14}⋮6\)(đpcm)