Chứng tỏ rằng :  1 3.4 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

\(b)\) Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\) ta có : 

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}-0=\frac{1}{2}\)

\(\Rightarrow\)\(A< \frac{1}{2}\) ( đpcm ) 

Vậy \(A< \frac{1}{2}\)

Chúc bạn học tốt ~ 

13 tháng 4 2018

\(a)\frac{9.25-63}{3.30+153}\)

\(=\frac{9.25-9.7}{3.30+3.51}\)

\(=\frac{9.\left(25-7\right)}{3.\left(30+51\right)}\)

\(=\frac{9.18}{3.81}\)

\(=\frac{1.6}{1.9}\)

\(=\frac{6}{9}\)

\(=\frac{2}{3}\)

b )    \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

AH
Akai Haruma
Giáo viên
23 tháng 4 2018

Lời giải:

Ta có:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy ta có đpcm.

30 tháng 3 2018

.3-2/2.3 + 4-3/3.4 + 5-4/4.5 + 6-5/5.6 +...+ 20-19/19.20=18/x

1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +...+ 1/19 - 1/20=18/x

1/2 - 1/20=18/x

10/20 - 1/20=18/x

9/20=18/x

18/40=18/x

=>x=40

Vậy x=40

1 tháng 4 2018

Thanks

13 tháng 3 2017

Xin lỗi máy tớ chỉ có cách viết phân số thế này / thông cảm

Ta có : A= 1/1 -1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 -1/5 +... + 1/19 - 1/20

=>       A= 1/1 - 1/20

=>        A = 19/20

Vậy A = 19/20

13 tháng 3 2017

\(\frac{19}{20}\)nhé

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)

=1-1/20

=19/20

24 tháng 4 2017

\(=1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)

\(=1+0+0+...+0-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 11\)

Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 11\)

24 tháng 4 2017

=1/2-1/3+1/3-1/4+...+1/99-1/100

=1/2-1/100

=50/100-1/100

=49/100<1

=> dãy trên < 1 đđcm

2 tháng 4 2016

S = 1/2+1/2.3+1/3.4 +... +1/9/10

S =1/2+1/2-1/3+1/3+1/4+...+1/9-1/10

S =1-10

S =9/10

Do 9/10<1

=>S<1

2 tháng 4 2016

S=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

  =1-(1/2-1/2)-(1/3-1/3)-(1/4-1/4)-...-(1/9-1/9)-1/10

  =1-1/10<1

Vậy S<1

6 tháng 5 2018

Bài 1

a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{10}{20}-\frac{1}{20}\)

\(=\frac{9}{20}\)

Tk mình nha!!

7 tháng 5 2018

Câu 2:

\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)

\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)

\(=\frac{3\cdot100}{2}\)

\(=\frac{300}{2}=150\)