K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

đặt biểu thức trên là A

ta có :

A = 1 + 3 +32 + 33 + 34 + ... + 310

3A = 3 + 32 + 33 + 34 + 35 + ... + 311

3A - A = ( 3 + 32 + 33 + 34 + 35 + ... + 311 ) - ( 1 + 3 +32 + 33 + 34 + ... + 310 )

2A = 311 - 1

A = ( 311 - 1 ) : 2     =>   điều phải chứng tỏ

17 tháng 10 2016

2;

2;

2;.

k cho mình nhé.

6 tháng 5 2016

a) Ta thấy: 1/2^2<1/1.2

              1/3^2<1/2.3

              1/4^2<1/3.4

              …………...

              1/100^2<1/99.100

=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100

Mà 99/100<1 =>  1/2+ 1/32 + 1/4+ ... + 1/1002<1

b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)

 =>A>50/150>1/3 (1)

 Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)

=>A<1/2 (2)

Từ (1) và (2) =>1/3<A<1/2

c) Ta thấy :  1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)

=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2

25 tháng 9 2018

2) \(A=2+2^2+2^3+2^4+...+2^{10}\)

\(2A=2^2+2^3+2^4+...+2^{11}\) . Mà 2A - A =A nên:

\(A=\left(2^2+2^3+2^4+...2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^{10}\right)\) hay

\(A=2^{11}-2\Leftrightarrow A+2=2^{11}^{^{\left(đpcm\right)}}\)

5 tháng 2 2019

a) Ta có:

10^n + 8

= 1000..0 + 8 ( n số 0)

= 100...08 ( n - 1 số 0 )

Tổng các chữ số là: 1 + 0 + .. + 0 + 8 = 9 chia hết cho 9

=>100..00 8 chia hết cho 9

=> 10^n +8 chia hết cho 9

b) \(1531\) và \(2001\) là số lẻ nên tổng của chúng là số chẵn hay tổng của chúng chia hết cho \(2\).

5 tháng 2 2019

c) Ta có: 10n+53=10.........0+125=100.....0125

\(\Rightarrow\) tổng các chữ số là: 1+0+...+0+1+2+5=9

Vì tổng các chữ số của 10n+53 \(⋮\) 3 và 9 ( \(9⋮\)3 và 9) nên 10n+53 chia hết cho 3 và 9.

a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)

b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)

\(=3\left(1+2^2+...+2^8\right)⋮3\)

6 tháng 5 2019

\(A=1+3+3^2+.....+3^{11}\)

\(A=\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)

\(A=\left(3^0.1+3^0.3+3^0.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)

\(A=1.\left(1+3+3^2\right)+....+3^9\left(1+3+3^2\right)\)

\(A=1.13+....+3^9.13\)

\(A=13.\left(1+....+3^9\right)⋮13\left(đpcm\right)\)

6 tháng 5 2019

Cảm ơn bạn nhé!

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

19 tháng 11 2018

1/a/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)

\(=2.3+2^3.3+....+2^9.3\)

\(=3\left(2+2^3+.....+2^9\right)⋮3\)

\(\Leftrightarrow A⋮3\left(đpcm\right)\)

b/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31\)

\(=31\left(2+2^6\right)⋮31\)

\(\Leftrightarrow A⋮31\left(đpcm\right)\)

2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :

\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)

+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)

\(2k+4⋮2\)

\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)

\(2k+8⋮2\)

\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

Vậy...

NV
19 tháng 11 2018

1/

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)

Do \(3⋮3\Rightarrow A⋮3\)

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.31+2^6.31=31\left(2+2^6\right)\)

Do \(31⋮31\Rightarrow A⋮31\)

2/ \(B=\left(n+4\right)\left(n+7\right)\)

Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)

Do 2 chẵn nên B chẵn

Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)

2 chẵn nên B chẵn

Vậy B luôn chẵn với mọi n

3/ Đề là B(112) hay B(121) bạn?