K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a) Gọi d là UCLN của (n+1;2n+3)

mà n + 1 \(⋮\)d nên 2n+3\(⋮\)d

\(\Rightarrow2.\left(n+1\right)⋮d\Leftrightarrow2n+2⋮d\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

mink nghĩ vậy bạn ạ, làm vậy thôi

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

16 tháng 2 2015

đề bài là 30n+1 thì mới làm được nếu là 30n+1 thì làm như sau 

gọi d thuộc ước chung  của 15n+1 và 30n+1 

suy ra 15n+1 chia hết cho d  

30n+1 chia hết cho d

vậy 2.(15n+1) chia hết cho d

30n+1 chia hết cho d 

suy ra 30n+2 chia hết cho d 

30n+1 chia hết cho d 

vậy(30n+2)-(30n+1) chi hết cho d 

1 chia hết cho d 

vậy d thuộc tập hợp 1 và -1

c/m 15n+1/30n+1 là phân số tối giản 

 

đè bài câu a sai ròi bạn ạ 

phải là 30n +1

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

19 tháng 8 2020

a) Gọi ƯCLN(n + 1 ; 2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN (2n + 1 ; 3n + 2) = d

=> \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 2n + 1 ; 3n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+1}{3n+2}\)là phân số tối giản

c) Gọi ƯCLN(14n + 3; 21n + 5) = d

Ta có : \(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 14n + 3 ; 21n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{14n+3}{21n+5}\) là phân số tối giản

d) Gọi ƯCLN(25n + 7 ; 15n + 4) = d

=> \(\hept{\begin{cases}25n+7⋮d\\15n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(25n+7\right)⋮d\\10\left(15n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}150n+42⋮d\\150n+40⋮d\end{cases}}\Rightarrow\left(150n+42\right)-\left(150n+40\right)⋮d\Rightarrow2⋮d\)

=> \(d\in\left\{1;2\right\}\)

Nếu n lẻ => 2n + 7 chẵn ; 15n + 4 lẻ 

=> ƯCLN(2n + 7 ; 5n + 4) = 1

Nếu n chẵn => 25n + 7 lẻ  ; 15n + 4 chẵn

=> ƯCLN(2n + 1 ; 15n + 4) = 1

=> d khái 2 <=> d = 1

=> \(\frac{2n+7}{15n+4}\)là phân số tối giản

17 tháng 3 2020

a,Gọi d là ƯCLN của tử và mẫu.Ta có

15n+1 chia hết cho d        =>30n+2 chia hết cho d

30n+1 chia hết cho d        =>30n+1 chia hết cho d

=>(30n+2)-(30n+1) chia hết cho d=1 chia hết cho d=>d=1

Vậy WCLN của phân số đó là 1(đpcm)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

17 tháng 2 2020

a) Gọi (2n+2,8n+7) là d  \(\left(d\inℕ^∗\right)\)

Vì (2n+2,8n+7) là d

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)

\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d

\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau

\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản

Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.

Các phần sau tương tự.

22 tháng 4 2020

gọi d là ƯC(5n + 4; 5n + 11)

\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)

\(\Rightarrow15n+12-15n-11⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản