Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước chung lớn nhất của 2n + 5 và n+3
<=> 2n+5 \(⋮\)d và n+3 \(⋮\)d
mà 2n+5 \(⋮\)d => 2(n+3) \(⋮\)d <=> 2n+6\(⋮\)d
2n+6-(2n+5) = 1 \(⋮\)d
=> d =1
=> \(\frac{2n+5}{n+3}\)là phân số tối giản
Gọi d là ƯC(n+1; 2n+3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow2n+2-2n-3⋮d\)
\(\Rightarrow\left(2n-2n\right)-\left(3-2\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản với mọi n thuộc N
Gọi ƯCLN(2n+3;3n+5)=d
Ta có:
2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=> 6n+10-6n-9 chia hết cho d
=> 1 chia hết cho d
mà d lớn nhất
=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)
Gọi ước nguyên tố của phân số là d (d là số tự nhiên)
Nhân tử với 3, mẫu với 2 thì ta có: 6n+3 chia hết cho d
6n+4 chia hết cho d
=> (6n+4)-(6n+3) chia hết cho d
Phá ngoặc thì 1 chia hết cho d=> d=1
=> (2n+1;3n+2)=1=> \(\frac{2n+1}{3n+2}\) là phân số tối giản với mọi giá trị n
Gọi UCLN(2n+1,4n+6)=d
Ta có:2n+1 chia hết cho d
4n+6 chia hết cho d
=>2(2n+1) chia hết cho d
4n+6 chia hết cho d
=>4n+2 chia hết cho d
4n+6 chia hết cho d
=>(4n+6)-(4n+2) chia hết cho d
=>4 chia hết cho d
=>d={1,2,4}
Mà 4n+6 không chia hết cho 4
=>d={1,2}
Mà 2n+1 không chia hết cho 2
=>d=1
Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản
Gọi d = ƯCLN ( 2n + 3 ; 6n + 8 )
Ta có : 2n + 3 chia hết cho d => 3( 2n + 3 ) chia hết cho d
6n + 8 chia hết cho d
=> ( 6n + 9 - 6n - 8 ) chia hết cho d
=. 1 chia hết cho d => d = 1 hoặc d = - 1
=> 2n + 3 ; 6n + 8 là hai số nguyên tố cùng nhau
=> Phân số \(\frac{2n+3}{6n+8}\) là phân số tối giản.
Gọi d là ƯCLN(2n+3, 6n+8)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\6n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\6n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)
=>(6n+9)-(6n+8)\(⋮\)d
=>1\(⋮\)d
=>d=1
Vậy \(\frac{2n+3}{6n+8}\)là phân số tối giản