K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Gọi USCLN của 12n+1 và 30n+2 là d

=> 12n+1 và 30n+2 chia hết cho d

=> 5(12n+1) và 2(30n+2) chia hết cho d

<=> 60n+5 và 60n+4 chia hết cho d

=> 60n+5-60n-4 chia hết cho d

=> 1 chia hết cho d

=> d=1

=> USCLN của 12n+1 và 30n+2 là 1

Vậy phân số đó là phân số tối giản

7 tháng 3 2017

gọi d là ước chung của (12n+1) và (30n+2)                                                                                                                                                  Ta co : (12n+1) chia hết cho d và (30n+2) chia hết cho d                                                                                                                      Suy ra : 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d                                                                                                                Suy ra 5(12n+1)-2(30n+2) chia hết cho d                                                                                                                                            Suy ra 1 chia hết cho d                                                                                                                                                                      Suy ra d=+-1.                                                                                                                                                                                    Suy ra \(\frac{12n+1}{30n+2}\)là phân số tối giản

16 tháng 3 2016

12n+1/30n+2 tối giản <=> ƯCLN(12n+1,30n+2)=1

Đặt ƯCLN(12n+1,30n+2)=d (d thuộc N*)

Ta có:12n+1 chia hết cho d =>5(12n+1) chia hết chod=>60n+5 chia hết cho d

          30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d

=>60n+5-(60n+4) chia hết cho d

<=> 60n+5-60n-4 chia hết cho d

=>1 chia hết cho d. d thuộc N* =>d =1

=>ƯCLN(12N+1,30N+2)=1

           Vậy Phân số 12n+1/30n+2 là tối giản

8 tháng 8 2016

Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> phân số 12n + 1/30n + 2 là phân số tối giản

27 tháng 4 2017

cm 2 so do ngto cung nhau la dc

29 tháng 5 2018

Gọi d là ƯC(12n+1,30n+2). Ta có :

( 12n + 1 ) \vdots d => 5.( 12n + 1) \vdots d hay ( 30n + 5 ) \vdots d

( 30n + 2 ) \vdots d => 2 . ( 30n + 2 ) \vdots d hay ( 30n + 4 ) \vdots d

=> ( 30n + 5 ) - ( 30n + 4 ) = 1

               => d = 1

Vậy : \frac{12n+1}{30n+2}  là phân số tối giản 

29 tháng 5 2018

Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}

Gọi ƯCLN(12n + 1; 30n + 2) là d

=>   \(12n+1⋮d\)     =>  \(5\left(12n+1\right)⋮d\)            =>      \(60n+5⋮d\)

         \(30n+2⋮d\)          \(2\left(30n+2\right)⋮d\)                      \(60n+4⋮d\)

=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}

Vậy \(\frac{12n+1}{30n+2}\)tối giản

21 tháng 6 2017

Gọi d là ƯCLN của tử và mẫu .

=>12n +1 chia hết cho d               60n+5 chia hết cho d

=> 30n +2chia hết cho d               60n +4 chia hết cho d

=> (60n+5) -(60n+4) chia hết cho d

=>1 chia hết cho d

=> d=1 => điều phải chứng minh (đpcm) 

25 tháng 4 2016

Gọi d là WCLN của 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d và 30n + 1 chia hết d

=> 5(12n+1 ) chia hết d và 2( 30n + 1) chia hết d

=> 60n+5 chia hết cho d và 60n + 4 chai hết cho d

=> (60n+5)-(60+4) chia hết cho d => 1 chia hết d

=> d=1

Vạy mội p/s có dạng 12n+1/30n+2 đều là p/s tối giản

25 tháng 4 2016

De 12n+1/30n+2la phan so toi gian thi 12n+1 va 30n+2 co UCLN la 1

Goi d la UCLN(12n+1;30n+2)

12n+1 chia het cho d ; 30n+2 chia het cho d

=>(30n+2)-(12n+1) chia het cho d

=30n+2-12n-1 chia het cho d

=(30n-12n)+(2-1) chia het cho d

8n chia het cho d la 1 chia het cho d

=> n=8n thi 12n+1/30n+2 la phan so toi gian

12 tháng 1 2023

 đặt (12n+1,30n+2)=d

=>12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

=>30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

ta có : 5*(12n+1)-2*(30n+2) chia hết cho d

       = 1 chia hết cho d

=> d=1

=>(12n+1,30n+2)=1

=>đpcm

12 tháng 1 2023

gọi d là ucln(12n+1;30n+2)

ta có : 12n+1 chia hết d

⇒60n + 5⋮d (1)

mà 30n+2⋮ d 

⇒60n + 4 ⋮ d (2)

từ (1) và (2) ta có:

⇒60n+5 -(60n+4)⋮d

⇒60n+5-60n-4⋮d

⇒1⋮d⇒d=1

vì ucln(12n+1;30n+2)=1

⇒12n+1/30n+2 là phân số tối giản

vậy 12n+1/30n+2 là phân số tối giản

10 tháng 9 2017

Ta có:\(\frac{12n+1}{30n+2}\)

\(\Leftrightarrow\frac{12.n+1}{30.n+2}=\frac{12+1.n}{30+2.n}=\frac{13.n}{32.n}\)

\(\Rightarrow\frac{12n+1}{30n+2}\)tối giản vì \(\frac{13.n}{32.n}=\frac{13}{32}.n\)

\(\frac{13}{32}\) là phân số tối giản nên \(\frac{13}{32}.n\)là tối giản.

\(\Rightarrow\frac{13.n}{32.n}=\frac{12n+1}{30n+2}=\)Phân số tối giản

Đs:

10 tháng 9 2017

Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :

\(12n+1⋮d\)và \(30n+2⋮d\)

\(\Leftrightarrow5\left(12n+1\right)⋮d\)và \(2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5⋮d\)và  \(60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì d = 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)

6 tháng 4 2017

Gọi d là UCLN của 12n +1/ 30n+2

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=>(60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> giả sử đầu bài đúng 

=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)

28 tháng 4 2020

Gọi d là ƯC(12n + 1 ; 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

=> 60n + 5 - 60n + 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_