Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6^2n + 19^n - 2^n+1 = 6^2n + 19^n - 2.2^n = 36^n - 2^n + 19^n -2^n = (36-2) + (19-2) = 34 + 17
Vì 34 và 17 đều chia hết cho 17. Suy ra 34 + 17 chia hết cho 17. Suy ra M chia hết cho 17
Ta có
mn(m^2 - n^2)
= mn[ (m^2 - 1) - (n^2 - 1) ]
= m(m^2 - 1)n - mn(n^2 - 1)
= (m - 1)m(m + 1)n - m(n - 1)n(n + 1)
Vì (m - 1)m(m + 1) là tích của 3 số nguyên liên tiếp nên nó chia hết cho 2 và 3.
Mà (2 , 3) = 1 => (m - 1)m(m + 1) chia hết cho 6 => (m - 1)m(m + 1)n chia hết cho 6.
Chứng minh tương tự ta được m(n - 1)n(n + 1) chia hết cho 6
=> (m - 1)m(m + 1)n - m(n - 1)n(n + 1) chia hết cho 6
Do đó m.n(m2 - n2) chia hết cho 6
Để n^2+6n+6 chia hết cho 36
=> n^2+6n+6 chia hết cho 6
Mà 6n và 6 chia hết cho 6 => n^2 chia hết cho 6
=> n^2 chia hết cho 2 và 3
Mà 2 và 3 là 2 số nguyên tố
=> n chia hết cho 2 và 3
=> n chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> n^2 và 6n đều chia hết cho 36
Mà 6 ko chia hết cho 36 => n^2+6n+6 ko chia hết cho 36
=> ĐPCM
Tk mk nha
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)
\(=3^n\cdot3\cdot10+2^{n+1}\cdot2\cdot3\)
\(=3^n\cdot30+2^{n+1}\cdot6\)
\(=6\left(3^n\cdot5+2^{n+1}\right)⋮6\left(đpcm\right)\)