Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 1).(\(x^2\) + y) - (\(x^2\) - y).(x - 2) - x (x + 2y) + 3 (y - 5)
= \(x^3\) + xy \(-x^2\) - y \(-x^3\) + \(2x^2\) + xy - 2y \(-x^2\) - 2xy + 3y - 15
= \(x^3\) \(-x^3\) \(-x^2\) \(-x^2\) + \(2x^2\) - y - 2y + 3y + xy + xy - 2xy - 15
= -15
\(\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=-15\)
Vậy biểu thức trên không phụ thuộc vào biến
a. -(b-a)3= -b3+a3 (phá ngoặc trước có dấu trừ nên đổi dấu)
= a3 - b3 = (a-b)3
b)
\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right)b+b^2\\ =a^2+2ab+b^2=\left(a+b\right)^2\)
1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37\) (Vì \(x-y=7\))
\(=100\)
Vậy \(A=100\)
b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10\)
\(=25\)
Vậy \(B=25\)
c) Ta có : \(C=\left(x-y\right)^2\)
\(=x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)-2xy\)
\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))
\(=16\)
Vậy \(C=16\)
2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)
\(=x^2+2xy\)
\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)
b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)
c) \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)+4xy\)
\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)
Chúc bn học tốt ✔✔✔
https://olm.vn/thanhvien/quynhgiang2k4 à mình quên ghi đề bài là:
rút gọn biểu thức nha
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
Ta có: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(=-\left(b^3-3ab^2+3a^2b-a^3\right)\)
\(=-\left(b-a\right)^3\)
Vậy..
c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
Ta có: \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
\(=x^3-6x^2y+9xy^2+y^3+y^3-6xy^2+9x^2y\)
\(=x^3-3x^2y\left(2-3\right)+3xy^2\left(3-2\right)+y^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\)
Vậy..
d)\(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(y^2+3x^2\right)\)
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2+x^2+y^2\right)\)
\(=2y\left(y^2+3x^2\right)\)
Vậy...
\(\left(x+y\right)^2+\left(x-y\right)^2=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)=2\left(x^2+y^2\right)\)
Biến đổi vế trái ta được:
\(\left(x+y\right)^2+\left(x-y\right)^2\)\(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\)
Vậy đpcm