Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(2x+5\right)^3-30x\left(2x+5\right)-8x^3\)
\(=\left(2x+5\right)\left(4x^2+20x+25-30x\right)-8x^3\)
\(=\left(2x+5\right)\left(4x^2-10x+25\right)-8x^3\)
\(=8x^3+125-8x^3\)
=125
Chú ý ( 3 m ) 2 = 9 m 2 . Rút gọn P = -12 Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.
Trả lời :
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến M = ( x2y - 3 )2 - ( 2x-y)3 +xy2( 9-x3 ) + 8x3 - 6x2y - y3
Đè bài đó mọi người mk viết lại cho mn nhìn rõ
Hãy cùng giúp bạn ấy nào
Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Ta có:
\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)-1\)
\(M=3x^2-15xy-3y^2+15xy-3x^2+3y^2\)
\(M=0\left(đpcm\right)\)
trong sach nang cao va phat trien lop 8 co ban a
ban tu tham khao
chu giai dai dong lam
bn rút gọn mất hết tham số là xong mà
Ta có : y=−13x3+(m−1)x2+(m+3)x−4y=−13x3+(m−1)x2+(m+3)x−4
Có y′=−x2+2(m−1)x+(m+3)y′=−x2+2(m−1)x+(m+3).
Để hàm số nghịch biến trên (0;3)(0;3) thì f′(x)<0∀x∈(0;3)f′(x)<0∀x∈(0;3) nghĩa là :
−x2+2(m−1)x+m+3<0⇔m<x2+2x−32x+1−x2+2(m−1)x+m+3<0⇔m<x2+2x−32x+1 với mọi x∈(0;3)x∈(0;3)
Đến đây ta chỉ việc tìm cực tiểu của hàm số f(x)=x2+2x−32x+1f(x)=x2+2x−32x+1 trên (0;3)(0;3).
Dễ dàng chứng minh f(x)f(x) đồng biến nên f(x)>f(0)=−3f(x)>f(0)=−3.
Vậy m≤−3m≤−3.
------------------------------------------
P/S:Ko chắc