Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN (4n+7; 2n+3) là d
ta có: 4n + 7 chia hết cho d
2n + 3 chia hết cho d => 4n + 6 chia hết cho d
=> 4n + 7 - 4n - 6 chia hết cho d
=> 1 chia hết cho d
=> (4n+7)/(2n+3) là p/s tối giản
Muốn chứng tỏ phân số \(\frac{4n+7}{2n+3}\)là phân số tối giản thì ta phải chứng minh được ( 4n+7; 2n + 3 ) = 1
Gọi d là ƯCLN( 4n + 7; 2n + 3 ). Ta có:
\(\hept{\begin{cases}4n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+7⋮d\\4n+6⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
=> Phân số \(\frac{4n+7}{2n+3}\)tối giản. ( ĐPCM )
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
Gọi ƯCLN(3n + 7 , 2n + 3) = d
=> \(\hept{\begin{cases}3n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2.\left(3n+7\right)⋮d\\3.\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+14⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow5⋮d\)
\(\Rightarrow d\inƯ\left(5\right)\)
\(\Rightarrow d\in\left\{1;5\right\}\)
Nếu d = 5
Mà \(2n+3\)tận cùng là số lẻ (1)
=> 2n + 3 \(⋮\)5 (2)
Từ (1) và (2) => 2n + 3 = ....5 \(⋮\)5 (3)
mà 3n + 7 tận cùng là chẵn hoặc lẻ
=> 3n + 7 = ...5 \(⋮\)5 (4)
Từ (3) và (4)
=> \(\frac{3n+7}{2n+3}\)là phân số chưa tối giản
VD : nếu n = 6
=> \(\frac{3n+7}{2n+3}=\frac{3.6+7}{2.6+3}=\frac{25}{15}=\frac{5}{3}\)
Điều này không thể chứng minh
Bài giải
Gọi d = ƯCLN ( 3n + 7 , 2n + 3 )
\(\Rightarrow\text{ }3n+7\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }2\left(3n+7\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }6n+14\text{ }⋮\text{ }d\)
\(2n +3\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }3\left(2n+3\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }6n+9\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }6n +14-\left(6n+9\right)\text{ }⋮\text{ }d\)
\(6n+14-6n-9\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }5\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }d\in\left\{1\text{ ; }5\right\}\)
Ta xét hai trường hợp :
TH1 : n lẻ => 3n + 7 chẵn
TH2 : n chẵn => 2n + 3 lẻ
=> Nếu \(d=5\) thì :
3n + 7 = 0 => n = \(-\frac{7}{3}\notin N\)
2n + 3 = 5 => n = \(1\)
Vậy \(d=1\)
\(\Rightarrow\text{ ĐPCM}\)
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
a, Gọi WCLN (n+1;2n+3)=d
\(\Rightarrow\)\(\left\{{}\begin{matrix}n+1:d\\2n+3:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}2.\left(n+1\right):d\\2n+3:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}2n+2:d\\2n+3:d\end{matrix}\right.\)
\(\Rightarrow\)(2n+3)-(2n+2):d
\(\Rightarrow\)2n+3-2n-2 :d
\(\Rightarrow\)1:d\(\frac{ }{\Rightarrow}\)d\(\in\) Ư (1;-1)
\(\Rightarrow\)n+1;2n+3 là số nguyên tố
Vậy \(\frac{n+1}{2n+3}\)là vân số tối giản
b,Gọi UCLN (2n+3;4n+7)=d
\(\Rightarrow\)\(\left\{{}\begin{matrix}2n+3:d\\4n+7:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}2\left(2n+3\right):d\\4n+7:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}4n+6:d\\4n+7:d\end{matrix}\right.\)
\(\Rightarrow\)(4n+7)-(4n+6):d
\(\Rightarrow\)4n+7-4n-6:d
\(\Rightarrow\)1:d \(\Rightarrow\)d\(\in\)Ư (1)
\(\Rightarrow\)2n+3;4n+7 là số nguyên tố
Vậy\(\frac{2n+3}{4n+7}\)là phân số tối giản
a, \(\frac{n+2}{n+3}\)
Gọi \(d=ƯCLN\left(n+2,n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản
b, \(\frac{n+1}{2n+3}\)
Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Chứng tỏ rằng các phân sô sau tối giản với mọi phân số:
\(A,\frac{n+1}{2n+3}\)\(B,\frac{2n+3}{4n+8}\)
a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d
=> n+1 \(⋮\)d
2n+3 \(⋮\)d
=> 2(n+1) \(⋮\)d
2n+ 3 \(⋮\)d
=> 2n+2 \(⋮\)d
2n+3 \(⋮\)d
=> 2n+3 - 2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> d =1
Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản
Phần b cũng thế nha
Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
=> \(1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
b Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ với mọi n nguyên
=> 2n + 3 không chia hết cho 2
=> \(d\ne2\)=> d = 1
Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
a) Đặt ƯCLN(n+1; 2n+3) = d
=> (2n + 3) - (n + 1) chia hết cho d
=> (2n + 3) - [2.(n + 1)] chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản
b) Đặt ƯCLN(2n+3; 4n+8) = d
=> (4n + 8) - (2n + 3) chia hết cho d
=> (4n + 8) - [2.(2n + 3)] chia hết cho d
=> (4n + 8) - (4n + 6) chia hết cho d
=> 2 chia hết cho d => d \(\in\) {1; 2}
Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1
Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản
a) \(\frac{n+1}{2n+3}\)
Đặt ƯCLN(n+1; 2n+3) = d
=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)
=> (2n + 3) - (n + 1) \(⋮d\)
=> (2n + 3) - [2.(n + 1)] \(⋮d\)
=> (2n + 3) - (2n + 2) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản
b) \(\frac{2n+3}{4n+8}\)
Đặt ƯCLN(2n+3;4n+8) = d
=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)
=> (4n + 8) - (2n + 3) \(⋮d\)
=> (4n + 8) - [2.(2n + 3)] \(⋮d\)
=> (4n + 8) - (4n + 6) \(⋮d\)
=> 2 chia hết cho d
=> d ∈ ∈ {1; 2}
Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ
=> \(d\ne2\Rightarrow d=1\)
Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Gọi d là ƯCLN(4n+7;2n+3)
Ta có:
2n+3 chia hết cho d =>2(2n+3) chia hết cho d
4n+7 chia hết cho d
=>(4n+7)-(4n+6) chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1;-1}
=>đpcm
Gọi ƯC( 4n+7; 2n + 3) = d
Ta có 4n+7 chia hết cho d; 2n+3 \(⋮\) d
2.(2n+3) chia\(⋮\)d
4n+7 \(⋮\)d ; 4n +6\(⋮\)d
1\(⋮\)d
\(\Rightarrow\)d=1
vậy \(\frac{4n+7}{2n+3}\)tối giản