\(\frac{2n+1}{2n\left(n+1\right)}\)là phân số tối giản (n \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

19 tháng 5 2019

Gọi \(ƯCLN\)\((2n+1,6n+7)=d\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6(2n+1)⋮d\\2(6n+7)⋮d\end{cases}}\)

Làm nốt nhé :v

19 tháng 5 2019

Gọi ( 2n+1 , 6n+7 )=d

=>\(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

===>\(\hept{\begin{cases}6\cdot\left(2n+1\right)⋮d\\2\cdot\left(6n+7\right)⋮d\end{cases}}\)

=>\(\hept{\begin{cases}12n+6⋮d\\12n+14⋮d\end{cases}}\)

<=>(12n+14 - 12n+6) \(⋮\)d

<=>8 \(⋮\)d

=> d  thuộc ước của 8.

Bạn tự cm d=1 nhé!

~ Chúc bạn hok tốt ~

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

14 tháng 4 2017

2n+1/2n(2n+1)

=1/2n

=> đó là phân số tối giản

15 tháng 4 2017

a, \(A=\frac{a^3+a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi ƯCLN(a2 + a - 1,a2 + a + 1) là d

=> a2 + a - 1 chia hết cho d

    a2 + a + 1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d

=> 2 chia hết cho d

=> d = {1;2}

Mà a2 + a - 1 = a(a + 1) - 1 là số lẻ nên d là số lẻ

=> d khác 2

=> d = 1

Vậy A là phân số tối giản (đpcm)

5 tháng 3 2018

a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:

\(3x+2⋮x+1\)

Ta có: 3x + 2 = 3(x + 1) - 1

mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1

có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1  hay x + 1 \(\in\)Ư(-1) = {1;-1}

Ta có bảng sau:

x+11-1
x0-2

Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2

b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)

\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)

\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)

\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)

\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(=>1⋮d\) \(=>d=1\)

Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản