\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Ta có : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)

Thấy : \(\frac{1}{11}>\frac{1}{100}\)

            \(\frac{1}{12}>\frac{1}{100}\)

              ...

              \(\frac{1}{99}>\frac{1}{100}\)

Cộng từng vế : \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+...+\frac{1}{100}\)( 90 SH 1/100)

                           \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{9}{10}\)

   =>                      \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}\)

    =>      Tổng trên > 1

10 tháng 8 2019

\(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)(1)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)

\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{10}}\)

Thay A vào (1)

\(\Rightarrow1-\left(1-\frac{1}{2^{10}}\right)\)

\(=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)

Ta có: 210 < 211

\(\Rightarrow\frac{1}{2^{10}}>\frac{1}{2^{11}}\)(đpcm)

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

12 tháng 8 2019

1>1/1*2

1/22>1/2*3

1/32>1/3/4

.....................

1/1002>1/100*101

=>1-1/22-...-1/1002>1/1*2-1/2*3-.....-1/100*101=1-1/2-1/2+1/3-1/3+......-1/100+1/101=1/101

                vậy 1-1/22-....-1002

   study well

 k nha

 ai k đúng cho mk thì mk trả lại gấp đôi và ngược lại

   ai ghé qua nhớ để lại 1 k  đúng 

 ủng hộ mk nha

21 tháng 9 2015

a) Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)=> \(2.A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

=> \(2.A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)=> \(1-A=1-\left(1-\frac{1}{2^{10}}\right)=\frac{1}{2^{10}}>\frac{1}{2^{11}}\)=> đpcm

b) Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Vì \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{100^2}<\frac{1}{99.100}\)nên \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\)

=> \(B<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)

=> 1 - B > \(1-\left(1-\frac{1}{100}\right)=\frac{1}{100}\) => đpcm

17 tháng 5 2017

C = 9/10.10/11.11/12....99/100

C = 9/100

4 tháng 6 2017

C=(-9/10)(-10/11)(-11/12)...(-98/99)(-99/100)

C=-9/100

8 tháng 6 2016

Ta có: \(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

\(\Rightarrow P=\frac{1.2.3....99}{2.3.4...100}\)

\(\Rightarrow P=\frac{1}{100}\)

Ta có: 1/100<1/10 =>P <1/10

nhưng mà bạn ơi, 1/100 làm sao có thể lớn hơn 1/15 được, bạn có sai đề chỗ nào không?

2 tháng 6 2016

Theo qui luật nào vậy ? Bạn xem lại chỗ 100

Cho P=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\). Chứng tỏ rằng \(\frac{1}{15}< P< \frac{1}{10}\)

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)