Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét M(x) có:
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left|2-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left|2-x\right|\ge0\)
\(\Rightarrow\) Đa thức M(x) vô nghiệm
a)cho A(x) =m*32 -2*3=0=>9m-6=0=>9m=6=>m=2/3
b)có B(x)=x2 +2*2*x+4+6
Áp dụng hằng đẳng thức a2 +2ab+b2=(a+b)2
có B(x)=(x+2)2 +6 >0
=>đpcm
Ta có:
x2-10x+26 = (x2-10x+25)+1=(x-5)2+1\(\ge\)1 với mọi x
=> Đa thức x2-10x+26 vô nghiệm với mọi x
Ta có: x2 -10x + 26 = x2 -5x -5x +25 +1 = x(x-5)-5(x-5) +1 = (x-5)2 +1
Mà \(\left(x-5\right)^2\ge0\)nên \(\left(x-5\right)^2+1\ge1\)
\(\Rightarrow\left(x-5\right)^2+1\ne0\)
Vậy đa thức trên không có nghiệm
Ta co \(x^2+4x+5=\left(x^2+4x+4\right)+1\)\(=\left(x+2\right)^2+1\)
Ma \(\left(x+2\right)^2\ge0\forall x\) Nen \(\left(x+2\right)^2+1>0\)
Vay da thuc tren khong co nghiem
Ta có: \(\left(y-3\right)^2\ge0\forall x\)
\(\left|2-y\right|\ge0\)
\(\Rightarrow\left(y-3\right)^2+\left|2-y\right|\ge0\)
Xét trường hợp (y-3)2+|2-y|=0
\(\left(y-3\right)^2+\left|2-y\right|=0\Leftrightarrow\hept{\begin{cases}\left(y-3\right)^2=0\\2-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3\\y=2\end{cases}}\)(vô lý)
Vậy \(\Rightarrow\left(y-3\right)^2+\left|2-y\right|>0\forall x\)
hay \(M\left(x\right)>0\)
Vậy M(x) vô nghiệm
Ta có : (y-3)2 là dương (số mũ chẵn)
| 2-y| cũng là dương vì là giá trị tuyệt đối
=> Với mọi y thì : (y-3)2 + | 2-y| lớn hơn hoặc bằng 0
=> M(y)= (y-3)2 + | 2-y| vô nghiệm