K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

Ta có: \(\left(y-3\right)^2\ge0\forall x\)

\(\left|2-y\right|\ge0\)

\(\Rightarrow\left(y-3\right)^2+\left|2-y\right|\ge0\)

Xét trường hợp (y-3)2+|2-y|=0 

\(\left(y-3\right)^2+\left|2-y\right|=0\Leftrightarrow\hept{\begin{cases}\left(y-3\right)^2=0\\2-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3\\y=2\end{cases}}\)(vô lý)

Vậy \(\Rightarrow\left(y-3\right)^2+\left|2-y\right|>0\forall x\)

hay \(M\left(x\right)>0\)

Vậy M(x) vô nghiệm

26 tháng 4 2017

Ta có : (y-3)2  là dương (số mũ chẵn)

         | 2-y|  cũng là dương vì là giá trị tuyệt đối

=> Với mọi y thì :  (y-3)2 + | 2-y| lớn hơn hoặc bằng 0

=> M(y)= (y-3)2 + | 2-y|  vô nghiệm

                         

13 tháng 5 2016

ai tra loi ho minh voi khocroikhocroi

13 tháng 5 2016

x^4>hoặc=0

nên x^4+x>hoặc=0

=>x^4+x+11/2.x^2+6>hoặc=0

=>đa thức M(x) vô nghiệm

28 tháng 4 2017

Xét M(x) có:

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left|2-x\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left|2-x\right|\ge0\)

\(\Rightarrow\) Đa thức M(x) vô nghiệm

29 tháng 4 2017

Bằng 0 là có nghiệm rồi. Vô lý

a)cho A(x) =m*32 -2*3=0=>9m-6=0=>9m=6=>m=2/3

b)có B(x)=x2 +2*2*x+4+6

Áp dụng hằng đẳng thức a2 +2ab+b2=(a+b)2

có B(x)=(x+2)2 +6 >0

=>đpcm

1 tháng 5 2017

a)\(A\left(3\right)=m.3^2-2.3=9m-6=0\Rightarrow9m=6\Rightarrow m=\frac{2}{3}\)

b)\(B\left(x\right)=x^2+4x+10=\left(x^2+4x+4\right)+6=\left(x+2\right)^2+6\ge6>0\)

=>đa thức vô nghiệm

15 tháng 5 2017

Ta có: 

x2-10x+26 = (x2-10x+25)+1=(x-5)2+1\(\ge\)1 với mọi x

=> Đa thức x2-10x+26 vô nghiệm với mọi x

15 tháng 5 2017

Ta có: x2 -10x + 26 = x2 -5x -5x +25 +1 = x(x-5)-5(x-5) +1 = (x-5)2 +1

Mà \(\left(x-5\right)^2\ge0\)nên \(\left(x-5\right)^2+1\ge1\)

\(\Rightarrow\left(x-5\right)^2+1\ne0\)

Vậy đa thức trên không có nghiệm

28 tháng 4 2016

x2+4x+4+1=(x+1)2+1

(x+1)+1 =0

(x+1)2=-1 ( vô lý)

==> da thuc k co nghiem

11 tháng 3 2019

Ta cần tìm x sao cho: \(P\left(x\right)=2\left(x-3\right)^2+5=0\)

Ta có: \(P\left(x\right)=2\left(x-3\right)^2+5\ge5>0\forall x\)

Vậy đa thức vô nghiệm.(đpcm)

Bài 2: 

Q(-1)=0

=>m-2m-3=0

=>-m-3=0

hay m=-3

1 tháng 5 2017

Ta co \(x^2+4x+5=\left(x^2+4x+4\right)+1\)\(=\left(x+2\right)^2+1\)

      Ma \(\left(x+2\right)^2\ge0\forall x\) Nen \(\left(x+2\right)^2+1>0\)

              Vay da thuc tren khong co nghiem