Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
Chúc bạn học tốt ~
ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\left(đpcm\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2008.2009}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}\)
\(=\frac{2009}{2009}-\frac{1}{2009}\)
\(=\frac{2008}{2009}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}< 1\left(đpcm\right)\)
\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(2D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
\(2D-D=\frac{1}{2}-\frac{1}{10^2}\)
\(D=\frac{10^2\cdot2}{10^2}-\frac{1}{10^2}=\frac{10^2\cdot2-1}{10^2}>1\)
\(\frac{1}{2^2}nha\)đề sai đó
\(tacó\)\(D< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)\(< 1\)
do dó D<1
D = 1/2.2 + 1/3.3 + 1/4.4 +......+ 1/10.10
D = 1/1.2 + 1/2.3 +.....+ 1/9.10
D = 1 - 1/2 + 1/2 - 1/3 +....+ 1/9 - 1/10
D = 1 - 1/10
D = 9/10 < 1
=> D < 1
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}=B\)
\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=1-\dfrac{1}{10}< 1\)
\(A< B< 1\Rightarrow A< 1\) => dpcm
Vì 1/2^2<1/1x2
1/3^2<1/2x3
..................
1/10^2<1/9x10
=>1/2^2+1/3^2+.....+1/10^2<1/1x2+1/2x3+......+1/9x10=9/10<1
=> Biểu thức đó nhỏ hơn 1
D = \(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{10\cdot10}\) < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
=> D < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
=> D < \(1-\frac{1}{10}\)< 1 => D < 1
Ta có : 1/22 = 1/2.2 < 1/1.2
1/32 = 1/3.3 < 1/2.3
-------------------------
1/102 = 1/10.10 < 1/9.10
=> 1/22+1/32+1/42+......+1/102 < 1/1.2 + 1/2.3 + ...+1/9.10
=> D < 1 - 1/2 + 1/2 - 1/3 + ... + 1/9 -1/10
=> D < 1-1/10
=> D < 9/10
Mà 9/10 < 1
=> D < 1