Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)
\(B\left(x\right)=4x^3-2x^2+4\)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
b)
c) Ta có:
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
\(a)\)\(5x^3-7x^2+4x-2=0\)
\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)
Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)
Hok tốt nhé eiu :>
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
Bài 1:
a)2x-6
Ta có:2x-6=0
2x=6
=>x=3
Vậy x=3 là nghiệm của đa thức a)
b)(6-x)(4-2x)
Ta có:(6-x)(4-2x)=0
Th1:6-x=0 =>x=6
Th2:4-2x=0
2x=4 =>x=2
Vậy x=2 và 6 là nghiệm của đa thức b)
c)x2+x
Ta có:x2+x=0
x(x+1)=0
TH1:x=0
TH2:x+1=0 =>x=-1
Vậy x=0 và -1 là nghiệm của đa thức c)
d)x2-81
Ta có:x2-81=0
x2=81
=>x=+_ 9
Vậy x=+_ 9 là nghiệm của đa thức d)
e)(2-x)(x2+1)
Ta có:(2-x)(x2+1)=0
TH1:2-x=0 =>x=2
TH2:x2+1=0
x2=-1 (loại)
Vậy x=2 là nghiệm đa thức e)
Bài 2:
P(x)=-2-3x2
Ta có:
-3x2≤0 với mọi x
=>-2-3x2<-2 với mọi x
Vậy đa thức P(x) vô nghiệm
Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)
Ta có:
y2≥0 với mọi y
y4≥0 với mọi y
=>\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)≥\(\dfrac{1}{4}\)>0 với mọi y
Vậy đa thức Q(y) vô nghiệm
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt
c)
`(x+2)^2 +1=0`
`=>(x+2)^2 =-1` (vô lí vì `(x+2)^2 ≥0∀x` )
d)
`x^4 +2019=0`
`=>x^4 =-2019` (vô lí vì `x^4 ≥0∀x` )
mũ chẵn thì luôn lớn hơn hoặc bằng không với mọi x