\(3x^4+\frac{1}{2}x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

lop 7 co hoc tim nghiem a (nghiem la gia tri cua bien de da thuc do nhan gia tri la 0)

P(x)=...

vì 3x^4>=0; (1/2)x^2>=0

100>=

suy ra P(x) > 0 (luon dung voi x thuoc so thuc) <=> vo nghiem

F(x)=x^2-2x+2012

<=> F(x)=x^2-2x+1+2011

<=> F(x)=(x-1)^2+2011

vi (x-1)^2>=0 voi moi x thuoc so thuc

suy ra F(x)>0 voi moi x thuoc so thuc <=> vo nghiem

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

24 tháng 7 2019

\(3x^4+\frac{1}{2}x^2+100\)

\(=3\left(x^4+2\cdot x^2\cdot\frac{1}{12}+\frac{1}{144}\right)+\frac{4799}{48}\)

\(=3\left(x^2+\frac{1}{12}\right)^2+\frac{4799}{48}>0\)

24 tháng 7 2019

\(P\left(x\right)=3x^4+\frac{1}{2}x^2+100\)

Ta thấy : \(3x^4\ge0\)và \(\frac{1}{2}x^2+100>0\forall x\)nên \(P\left(x\right)>0\forall x\)

Vậy đa thức \(P\left(x\right)\)không có nghiệm

Tham khảo nha bn !!!

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

a) Ta có: \(\dfrac{5}{2}x^4\ge0\) với mọi x

\(3x^2\ge0\) với mọi x

Do đó \(\dfrac{5}{2}x^4+3x^2+9\ge9\) với mọi x

\(\Rightarrow P\left(x\right)>0\) với mọi x (đpcm)

28 tháng 7 2017

a, Ta có : \(\dfrac{5}{2}x^4+3x^2+9\) \(\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó \(\dfrac{5}{2}x^4+3x^2+9\ge9\forall x\)

=> P(x) > 0 \(\forall x\)( ĐPCM)

=> CMHT