\(\frac{1}{1.1!}+\frac{1}{2.2!}+\frac{1}{3.3!}+...+\frac{1}{2019.2019!}< \frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Thấy :            \(\frac{1}{1.1!}=\frac{1}{1}\)

                       \(\frac{1}{2.2!}=\frac{1}{4}\)

                       \(\frac{1}{3.3!}< \frac{1}{1.2.3}\)( Vì 3.3! > 1.2.3 )

                         ...

                       \(\frac{1}{2019.2019!}< \frac{1}{2017.2018.2019}\)( vì 2019.2019! < 2017.2018.2019)

Cộng từng vế có :

  \(\frac{1}{3.3!}+\frac{1}{4.4!}+...+\frac{1}{2019.2019!}< \frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)

\(\Rightarrow\frac{1}{1.1!}+\frac{1}{2.2!}+...+\frac{1}{2019.2019!}< \frac{1}{1}+\frac{1}{4}+\frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)

\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right):2\)

\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2018.2019}\right):2\)

\(\Rightarrow C< \frac{3}{2}-\frac{1}{2.2018.2019}\)

Vì \(\frac{1}{2.2018.2019}>0\Rightarrow C< \frac{3}{2}\)

7 tháng 8 2018

Xàm hả!!!!!!!!!

toán j lạ vậy

11 tháng 8 2018

toán đúng rồi đó ban, nhưng mình làm rồi

7 tháng 2 2018

Ta có:

\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)

..............

\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)

=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)

=>A<\(\frac{3}{4}\)

7 tháng 2 2018

Mình nghĩ bạn cần xem lại :

\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)

Xem lại ..

4 tháng 3 2017

Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)

            \(\frac{1}{3.3}< \frac{1}{2.3}\)

            \(\frac{1}{4.4}< \frac{1}{3.4}\)

              ...................

        \(\frac{1}{100.100}< \frac{1}{99.100}\)

Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)

\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

4 tháng 3 2017

Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)

                \(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)

                 \(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)

                   ......        ....   ......

              \(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)

\(\Rightarrow\)\(\frac{1}{2.2}\)\(\frac{1}{3.3}\)\(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)

\(\frac{1}{2.2}\)\(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)\(1-\frac{1}{100}=\frac{99}{100}< 1\)

26 tháng 7 2015

S= 1/2 - 1/2 + 1/3 - 1/3 + 1/4 - 1/4 +...+ 1/50 - 1/50

S=       0     +       0      +      0      +...+        0

S=  0

4 tháng 6 2020

\(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}+\frac{1}{50.50}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)

\(=0+0+...+0\)

\(=0\)

22 tháng 7 2016

Ta có:\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

=>A<1

22 tháng 7 2016

\(\text{Ta có: }\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};.....;\frac{1}{10.10}< \frac{1}{9.10}\)

 \(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)

\(\Rightarrow A< 1-\frac{1}{10}\)

\(\Rightarrow A< \frac{9}{10}< 1\)

14 tháng 7 2016

Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}\)

Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\)

bài làm 

C=1+3+32+.............+3100

C=3C−C2 

3C=3+32+33+.............+399+3100+3101

C=1+3+32+..................+399+3100

3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100

Triệt tiêu các số hạng co giá trị tuyệt đối  bằng nhau, ta được:

2C=-1+3100

⇒C=3100−12 

D=2/D+D/3 

2D=2101-2100+299-298+..............+23-22

D=2100-299+298-297+............+22-2

2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2

Triệt tiêu các số hạng có giá trị tuyệt đối  bằng nhau, ta được:

3D=2101-2

⇒D=2101−23 

B=31×4 +54×9 +79×16 +.........+1981×100 

Quan sát biểu thức, ta có nhận xét:

4-1=3;

9-4=5;

16-9=7;

.......;100-81=19

=> Hiệu hai số ở mẫu bằng giá trị ở tử

⇒B=1−14 +14 −19 +19 −116 +.......+181 −1100 

⇒B=1−1/100 

B=99/100 <100/100 

Vậy B<1