Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
a) Ta có: \(x^2-2x+3< -2x+3\)
\(\Rightarrow x^2< 0\)
=> vô lý
=> vô nghiệm
b) \(x^2+2x+2\le0\)
\(\Leftrightarrow\left(x+1\right)^2+1\le0\)
\(\Rightarrow\left(x+1\right)^2\le-1\)
=> vô lý
=> vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
a) Ta có: \(x^2+1< 1\)
\(\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\left(\forall x\right)\)
=> vô lý
=> BPT vô nghiệm
b) \(x^2+2x< 2x\)
\(\Rightarrow x^2< 0\)
tương tự a BPT vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
A = 3x(2x + 11) - 5(2x+ 11) - 2x(3x + 7) - 3(3x + 7)
A= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)
B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2
= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2
= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)
A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7)
=\(6x^2+23x-55-\left(6x^2+23x+21\right)\)
=\(6x^2+23x-55-6x^2-23x-21\)
= -76
Vậy A không phụ thuộc vào x
![](https://rs.olm.vn/images/avt/0.png?1311)
1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0
\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0
\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0
\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0
VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x
x^2+1>0\(\forall\)x
\(\Rightarrow\)Phương trình đã cho vô nghiệm
1)x^4 - x^3 + 2x^2 - x + 1 = 0
(x^4 + 2x^2 +1) - (x^3+x)= 0
x^4 + 2x^2 + 1 = x^3 - x
(x^2 + 1)^2 = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
x^2+1 = x (vô lí)
==> PT vô nghiệm
Vì x^2-2x+17<3-4x←→x^2+2x+14<0←→(x+1)^2+13<0←→Vô nghiệm
Ta có: \(x^2-2x+17< 3-4x\)
\(\Leftrightarrow x^2-2x+17-3+4x< 0\)
\(\Leftrightarrow x^2+2x+14< 0\)(1)
Ta có: \(x^2+2x+14\)
\(=x^2+2x+1+13\)
\(=\left(x+1\right)^2+13\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+13\ge13>0\forall x\)
hay \(x^2+2x+14>0\forall x\)(2)
Từ (1) và (2) suy ra \(x\in\varnothing\)
hay bất phương trình \(x^2-2x+17< 3-4x\) vô nghiệm(đpcm)