\(:\)\(B\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

Dù số lẻ nâng lũy thừa bao nhiu thì nó vận là số lẻ 

Mà theo quy luật lẻ + lẻ = Chẵn 

Số này > 2 

Vậy B là Hợp số

15 tháng 12 2015

232010 le

312012 lẻ

=> Tổng chẵn

=> hợp số 

15 tháng 12 2015

 

lẻ + lẻ = chẵn  = hợp số

29 tháng 11 2018

Với x,y,z \(\in N\)

Chứng tỏ : \((100x+10y+z)⋮21\Leftrightarrow(x-2y+4z)⋮21\)

Giải :

100x + 10y + z chia hết cho 21 nên cũng chia hết cho 3 và 7

Ta có : x - 2y + 4z = \((100x+10y+z)-(99x+12y-3z)\)mà 100x + 10y + z và 99x + 12y - 3z đều chia hết cho 3

nên x - 2y + 4z chia hết cho 3

Có \(2\cdot(x-2y+4z)=(100x+10y+z)-(98x-14y+7z)\)mà 100x + 10y + z và 98x + 14y - 7z đều chia hết cho 7 nên \(2\cdot(x-2y+4z)⋮7\)mà 2 không chia hết cho 7 nên x - 2y + 4z chia hết cho 7

=> x - 2y + 4z chia hết cho 3 và 7 nên sẽ chia hết cho 21

Chúc bạn hok tốt :>

8 tháng 2 2021

1) Ta có: \(\frac{2019}{2020}+\frac{2020}{2021}=\frac{2019}{2020}+\frac{4040}{4042}>\frac{4040}{4042}>\frac{4039}{4041}\)

Mà \(\frac{2019+2020}{2020+2021}=\frac{4039}{4041}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019+2020}{2020+2021}\)

2) BĐT cần CM tương đương:

\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (Luôn đúng)

Dấu "=" xảy ra khi: a = b

Hoặc có thể sử dụng BĐT Cauchy nếu bạn học cao hơn

8 tháng 2 2021

Tìm x e Z biết: 2x+1 e Ư (x+5) và x e N

giải giúp mình nhé!

mình cần gấpppppppppppppp

23 tháng 3 2020

Ta có A=2010/2011+2011/2012

=(1-1/2011)+(1-1/2012)

=1-1/2011+1-1/2012

=(1+1)-(1/2011+1/2012)

=2-(1/2011+1/2012)

=>A<2

Vì 1/2011+1/2012<1/2+1/2=1

=>2>A>1(1)

Ta có B=(2010+2011)/(2011+2012)

          =(2011+2012-2)/(2011+2012)

         =1-2/(2011+2012)

=>B<1(2)

Từ (1) và (2) => A>B

7 tháng 5 2018

98B là sao 

7 tháng 5 2018

1/90 nha ban k nha

25 tháng 8 2020

a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)

\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)

b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)

\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)

\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)

c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)

\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)

\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)

d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)

e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)

\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)

25 tháng 8 2020

a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)

\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{303}{610}\)

\(\Rightarrow B=\frac{101}{610}\)

b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)

\(\Rightarrow C=\frac{408}{205}\)

c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)

\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)

\(\Rightarrow D=\frac{1350}{271}\)