K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

A = 3 + 32 + 33 + ... + 3100  

Số số hạng của A = ( 100 - 1 ) : 1 + 1 = 100 ssh . Ta chia A thanh 25 nhóm , mỗi nhóm cs 4 ssh . 

=> A = ( 3 + 32 + 33 + 34 ) + .... + ( 397 + 398 + 399 + 3100 ) 

     A  =  3. ( 1 + 3 + 32 + 33 ) + .... + 397.( 1 + 3 + 32 + 33 ) 

     A  = 3. 40 + ... + 397 . 40 

    A  = 40. ( 3 + ... + 397 ) 

   =>  A \(⋮\) 40 ( đpcm ) 

14 tháng 2 2022

A = 3 + 32 + 33 + ... + 3100  

Số số hạng của A = ( 100 - 1 ) : 1 + 1 = 100 ssh . Ta chia A thanh 25 nhóm , mỗi nhóm cs 4 ssh . 

=> A = ( 3 + 32 + 33 + 34 ) + .... + ( 397 + 398 + 399 + 3100 ) 

     A  =  3. ( 1 + 3 + 32 + 33 ) + .... + 397.( 1 + 3 + 32 + 33 ) 

     A  = 3. 40 + ... + 397 . 40 

    A  = 40. ( 3 + ... + 397 ) 

   =>  A  40 ( đpcm ) 

HT

1 tháng 3 2020

\(S=2+2^2+2^3+...+2^{100}\)

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)

\(S=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{99}\left(1+2\right)\)

\(S=2\cdot3+2^3\cdot3+....+2^{99}\cdot3\)

\(S=3\left(2+2^3+....+2^{99}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)

S có 100 lũy thừa cơ số 2, ta nhóm thành 50 cặp, mỗi cặp hai lũy thừa liền nhau

S = (2 + 2^2) + (2^3+ 2^4) + .......... + (2^99 + 2^100)

S = 2(1 +2) + 2^3(1 + 2) + ........... + 2^99(1+2)

S = 2.3 + 2^3.3 + .................. +2^99.3 (đặt thừa số chung)

các số hạng của S chia hết cho 3 => S chia hết cho 3

Tương tự cách trên nhưng bạn nhóm thành 25 cặp, mỗi cặp 4 lũy thừa cơ số 2 thì được kết quả chia hết cho 15

Sau khi đặt thừa số chung bạn thấy tổng này 1 + 2 + 2^2 + 2^3 = 15

=> S chia hết cho 15

31 tháng 10 2021

\(A=2+2^2+2^3+...+2^{100}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{98}.6\)

\(A=6\left(1+2^2+...+2^{98}\right)\)

Có : \(6⋮6\)

\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)

\(\Rightarrow A⋮6\)

11 tháng 10 2022

suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

 

6 tháng 11 2020

ta có :

A = 3 + 32 + 33 + ...+ 359 + 360  

A = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ...+ ( 358 + 359 + 360 )

A = 3( 1 + 3 + 32) + 34(1+3+32) + ...+ 358(1+3+32 )

A = 3. 13 + 34.13 + ...+ 358.13 

=> A chia hết cho 13 

NM
6 tháng 11 2020

Ta chú ý : \(3+3^2+3^3=3\left(1+3+9\right)=3.13\)

\(\Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)

\(\Leftrightarrow A=3.13+3^4.13+...+3^{58}.13\)

\(\Leftrightarrow A=13\left(3+3^4+..+3^{58}\right)⋮13\)

Vậy A chia hết cho 13

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

24 tháng 12 2021

\(A=2+2^2+2^3+.......+2^{100},\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+.....+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+....+2^{98}.6\)

\(A=6\left(1+2^2+.......+2^{98}\right)\)

\(A=6\left(1+2^2+........+2^{98}\right)\text{⋮6}\)

24 tháng 12 2021
Giúp mik với mấy bạn
17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

29 tháng 10 2021

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

28 tháng 10 2022

câu a của bạn thiếu 2 mũ 2