Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A= 75×[(42011 - 1)/3] +25
A = 25×(42011- 1) +25
A= 25×4×42010 - 25 +25
A= 100 × 42010
A chia hết cho 100
Bài 2:
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)
\(=6\left(5+5^3+...+5^9\right)⋮6\)
Câu 3:
a: \(\Leftrightarrow n-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(\Leftrightarrow4n+2+1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)
\(\Leftrightarrow n=\dfrac{13k+5}{4}\)
A = 21 + 22 + 23 + 24 + 25 + ....+ 22010
C/T A chia hết cho 3
=>A = (21 + 22) + (23 + 24)+ (25 + 26)....+ (22009+22010)
=>A = 2(1+2)+23(1+2)+25(1+2)+...+22009(1+2)
=> A = (1+2)(2+23+25+...+22009)
=> A = 3(2+23+25+...+22009)
Mà 3 chia hết cho 3
=> A chia hết cho 3
C/T A chia hết cho 7
=> A = (21 + 22 + 23)+ (24+ 25 + 26)....+ (22008+22009+22010)
=> A = 2(1+2+4)+24(1+2+4)+...+22008(1+2+4)
=> A = (1+2+4)(2+24+...+22008)
=> A = 7(2+24+...+22008)
Mà 7 chia hết cho 7
=> A chia hết cho 7
B = 31 + 32 + 33 + 34 + ...+ 32010
C/T B chia hết cho 4
=> B = (31 + 32) + (33 + 34) + ...+(32009 + 32010)
=> B = 3(1+3)+33(1+3)+...+32009(1+3)
=> B = (1+3)(3+33+...+32009)
=> B = 4(3+33+...+32009)
Mà 4 chia hết cho 4
=> B chia hết cho 4
C/T B chia hết cho 13
=> B = (31 + 32 + 33) + (34 + 35 + 36) +...+ (32008 + 32009 + 32010)
=> B = 3(1+3+9)+34(1+3+9)+...+32008(1+3+9)
=> B = (1+3+9)(3+34+...+32008)
=> B = 13(3+34+...+32008)
Mà 13 chia hết cho 13
=> B chia hết cho 13
a.A= 3+ 32+ 33 + 34 +...+310
Ta có :A= 3 + 32 + 33 + 34 + ... +310
A= 3+ 9+ 27+ 81+ ...+310
A= (3 +9)+(33 + 34)+(35 + 36)+...+(39 + 310)
A= 12 + (32 X 3 +32 X 32) + (34 X 3 + 34 X 32) + ...+ (38 X 3 + 38 X 32)
A= 12 + [32 X (3 + 32)] + [34 X (3+32)] + ....+ [38X(3 + 32)]
A= 12 + 32 X 12 + 34 X 12 + .... + 38 X 12
A= 12 X (1 + 32 + 34 + ... + 38)
Vì 12 chia hết cho 4 nên A chia hết cho 4
A = 1 + 3 + 32 + 33 + 34 + 35 + ........ + 313 + 314 + 315
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ..... + (312 + 313 + 314 + 315)
A = (1 + 3 + 9 + 27) + 34.(1 + 3 + 9 + 27) + ........ + 312.(1 + 3 + 9 + 27)
A = 40.1 + 34.40 + ...... + 312.40
A = 40.(1 + 34 + .....+ 312)
A = 5.8.(1 + 34 + .....+ 312)
=> A chia hết cho 5
a)Chứng tỏ :A=30+31+32+33+34+35+...+325+326 chia hết cho 13
Ta có:
A=30+31+32+33+34+35+...+325+326
A=(30+31+32)+(33+34+35)+...+(324+325+326)
A=(30+31+32)+33(30+31+32)+...+324(30+31+32)
A=13+33.13+...+324.13
A=13(1+33+...+324) chia hết cho 13
Vậy A chia hết cho 13
b)Chứng tỏ A không chia hết cho 3 và 4
Để chứng tỏ A không chia hết cho 3 và 4 thì ta phải chứng tỏ A không chia hết cho 12
Vì biểu thức A toàn các lũy thừa cơ số 3 nên A chia hết cho 3=>ta phải chứng tỏ A không chia hết cho 4
Ta có:
A=30+31+32+33+34+35+...+325+326
A=1+(31+32)+(33+34)+...+(325+326)
A=1+(30+31)+33(30+31)+...+325(30+31)
A=1+4+33.4+...+325.4
A=1+4(1+33+...+325)
Vì 4(1+33+...+325) chia hết cho 4 nên 1+4(1+33+...+325) không chia hết cho 4 hay A không chia hết cho 4
=> A không chia hết cho 3 và 4