Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 1/2+2/22+3/23+4/24+...+100/2100
<=> A = 1/2+2/4+3/9+4/16+...+100/2100
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+1-\frac{1}{100}\)
\(=2-\frac{1}{100}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
A=2+22+23+....+299+2100
A=(2+22+23+24+25)+(26+27+28+29+210)+......+(296+297+298+299+2100)
A=(2+22+23+24+25)+25.(2+22+23+24+25)+....+295.(2+22+23+24+25)
A=62+25.62+.....+295.62
A=62.(1+25+.....+295)
A=31.2.(1+25+...+295)\(⋮\)31
Vậy A\(⋮\)31
Chúc bn học tốt
\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)(1)
\(2.A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{99}}\)(2)
lay (2)-(1)
\(2.A-A=A=1-\frac{1}{2^{100}}< 1\Rightarrow dpcm\)
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )
\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3C=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3C-C=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6C=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6C-2C=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4C=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4C=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4C=3-\frac{203}{3^{100}}< 3\)
\(\Rightarrow C< \frac{3}{4}\left(đpcm\right)\)
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^2}+....+\frac{100}{2^{100}}\)
\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}\)
\(\Rightarrow2A-A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}-\frac{1}{2}-\frac{2}{2^2}-...-\frac{100}{2^{100}}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(3)
Đặt \(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(2)
\(\Rightarrow2P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2P-P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}-1-\frac{1}{2}-...-\frac{1}{2^{99}}\)
\(\Rightarrow P=2-\frac{1}{2^{99}}< 2\)(1)
Từ (1),(2),(3) => A<2
Giải
Ta có A =1/2 + 2/2^2 + 3/2^3 + ... + 100/2^100
=> 2A = 1 + 2/2 + 3/2^2 + ... + 100/2^99
=> 2A - A = 1 + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 - 100/2^100
=> A = ( 1 - 100/2^100) + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 (*)
Đặt B = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99
=> 2B = 1 + 1/2 + 1/2^2 + ... + 1/2^98
=> 2B - B = 1 - 1/2^99
=> B = 1 - 1/2^99
Thay B vào (*) ta được:
A = ( 1 - 100/2^100 ) + ( 1 - 1/2^99 )
A = 2 - ( 100/2^100 + 1/2^99 ) < 2
=> A < 2 (đpcm)