Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nhầm chỗ: 219(2 + 22 + 23) mà là 218(2 + 22 + 23)
nhóm đầu: 2 + 22 + 23 = 14
nhóm hai: 24 + 25 + 26 = 23(2 + 22 + 23) = 23 x 14
............
nhóm cuối: 219 + 220 + 221 = 218(2 + 22 + 23) = 218 x 14
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
\(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=6+6\cdot2^2+...+6\cdot2^{18}\)
\(A=6\cdot\left(1+2^2+...+2^{18}\right)⋮\text{ }3\text{ v}\)
\(A=2+2^2+2^3+....+2^{20}.\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{19}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{19}.3\)
\(=3.\left(2+2^3+...+2^{19}\right)⋮3\)
\(\Rightarrow A⋮3\)( đpcm)
\(\text{Vì A có các hạng tử đều là lũy thừa của 2 nên }\) \(A⋮2\)
Vì \(A⋮2\)và \(A⋮3\)Nên \(A⋮6\)(đpcm)
Ta có A= \(2+2^2+2^3+....+2^{21}\)
=> A= \(2+2^2\left(2^3+2^4\right)+2^5\left(2^3+2^4\right)+......+2^{18}\left(2^3+2^4\right)+2^{21}\)
=> A=\(2+2^2.14+2^5.14+.....+2^{18}.14+2^{21}\)
Vì trong A có thừa số 14 nên A chia hết cho 14
A=(2+22+23)+(24+25+26)+...+(219+220+221)=14+23(2+22+23)+...+218(2+22+23)
A=14+23.14+...+218.14=14(1+23+26+...+215+218) chia hết cho 14
\(A=2+2^2+2^3+2^4+...+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=6+2^2\cdot6+...+2^{18}\cdot6\)
\(A=6\cdot\left(1+2^2+...+2^{18}\right)\)
\(A=2\cdot3\cdot\left(1+2^2+...+2^{18}\right)⋮3\left(ĐPCM\right)\)
A = 2 + 22 + 23 + 24 + ... + 219 + 220
= (2 + 22) + (23 + 24) + ... + (219 + 220)
= 2(1 + 2) + 23. (1 + 2) + ... + 219. (1 + 2)
= 2.3 + 23 . 3 + ... + 219 . 3
= 3 . (2 + 23 + ... + 219)
=> 3 . (2 + 23 + ... + 219) \(⋮\)3
=> A \(⋮\)3
A = 2 + 22 + 23 + 24 + ... + 219 + 220
= (2 + 23 + 25 +... + 219) + (22 + 24 + 26 +... + 220)
= (2 + 23+ 25 + ... + 219) + 4. (1 + 22 + 24 + ... + 218)
= 4. (1 + 22 + 24 + ... + 218) + (2 + 23 + 25 + ... + 219)
=> 4. (1 + 22 + 24 +... + 218) + (2 + 23 + 25 + ... + 219) \(⋮\)4
=> A \(⋮\)4
dậy sớm thế =)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=3+2^2.\left(1+2\right)+...+2^{19}.\left(1+2\right)\)
\(A=3+2^2.3+...+2^{19}.3\)
\(A=3.\left(1+2^2+...+2^{19}\right)\)
\(B=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{20}+2^{21}\right)\)
\(B=1+2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{20}.\left(1+2\right)\)
\(B=1+2.3+2^3.3+...+2^{20}.3\)
\(B=1+3.\left(2+2^3+...+2^{20}\right)\)
vì \(3.\left(2+2^3+...+2^{20}\right)⋮3,1⋮̸3=>1+3.\left(2+2^3+...+2^{20}\right)⋮̸3\)
câu A mk quên vt chia hết cho 3 bn them vào tí là đc :>
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)