Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
Bài 1 bạn viết rõ yêu cầu của đề ra nhé , mình làm bài 2.
\(a.\left(a-b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\left(đpcm\right)\)
\(b.a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Leftrightarrow a=b=c\left(đpcm\right)\)
\(c.\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-2ab-2bc-2ac\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow a=b=c\) ( Kết quả câu b)
dùng diện tích để chứng tỏ (a+b) 2 = a2 + 2ab + b2
dùng diện tích để chứng tỏ (a-b)2 = a2 - 2ab + b2
Bài 2.2 - Bài tập bổ sung Sách bài tập - trang 159 - Toán lớp 8 | Học trực tuyến
`(a^2-b^2)/(a^2b + ab^2) = ((a-b)(a+b))/(ab(a+b)) = (a-b)/(ab)`.
`(a-b)/(ab) = ((a-b)(a+b))/(ab(a+b)) = (a^2-b^2)/(ab(a+b))`
Xét VP: (a3+b3)(a2+b2) - (a+b)
= a5 + b5 + a3b2 + a2b3 - (a+b)
= a5 + b5 + a2b2(a+b) - (a+b)
= a5 + b5 + (a+b) - (a+b)
= a5 + b5 = VP (đpcm)
Bài làm
Ta có: ( a - b )2 < 2( a2 + b2 )
<=> a2 - 2ab + b2 < 2a2 + 2b2
<=> a2 - 2a2 - 2ab + b2 - 2b2 < 0
<=> -a2 - 2ab - b2 < 0
<=> -( a2 + 2ab + b2 ) < 0
<=> -( a + b )2 . ( -1 ) > 0 . ( -1 )
<=> ( a + b )2 > 0 V a, b ( luôn đúng )
Vậy ( a - b )2 < 2( a2 + b2 ) ( đpcm )