K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Ta có: ( a - b )2 < 2( a2 + b2 )

<=> a2 - 2ab + b2 < 2a2 + 2b2 

<=> a2 - 2a2 - 2ab + b2 - 2b2 < 0

<=> -a2 - 2ab - b2 < 0

<=> -( a2 + 2ab + b2 ) < 0

<=> -( a + b )2 . ( -1 ) > 0 . ( -1 )

<=>  ( a + b )2 > 0 V a, b ( luôn đúng )

Vậy ( a - b )2 < 2( a2 + b2 ) ( đpcm )

20 tháng 3 2018

2.

\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Tương tự.......................

20 tháng 3 2018

1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)

Lại có: b - a < 0 ( a > b)

ab >0 ( a>0, b > 0)

\(\Rightarrow\dfrac{b-a}{ab}< 0\)

Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)

2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b

3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b

3 tháng 7 2018

Bài 1 bạn viết rõ yêu cầu của đề ra nhé , mình làm bài 2.

\(a.\left(a-b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\)

\(\Leftrightarrow a=-b\left(đpcm\right)\)

\(b.a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Leftrightarrow a=b=c\left(đpcm\right)\)

\(c.\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-2ab-2bc-2ac\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a=b=c\) ( Kết quả câu b)

15 tháng 11 2017

Bài 2.2 - Bài tập bổ sung Sách bài tập - trang 159 - Toán lớp 8 | Học trực tuyến

2 tháng 11 2017

dùng nhân đa thức với đa thức

2 tháng 11 2017

bạn kai nói đúng rồi đó nha

`(a^2-b^2)/(a^2b + ab^2) = ((a-b)(a+b))/(ab(a+b)) = (a-b)/(ab)`.

`(a-b)/(ab) = ((a-b)(a+b))/(ab(a+b)) = (a^2-b^2)/(ab(a+b))`

6 tháng 9 2017

Xét VP: (a3+b3)(a2+b2) - (a+b)

= a5 + b5 + a3b2 + a2b3 - (a+b)

= a5 + b5 + a2b2(a+b) - (a+b)

= a5 + b5 + (a+b) - (a+b)

= a5 + b5 = VP (đpcm)

6 tháng 9 2017

= VT nhé.