Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN ( 7n+4 và 5n + 3 )
Vậy \(5n+3⋮d\)và \(7n+4⋮d\)
\(\Rightarrow7\left(5n+3\right)⋮d\)và \(5\left(7n+4\right)⋮d\)
\(\Leftrightarrow35n+21⋮d\)và \(35n+20⋮d\)
\(\Rightarrow35n+21-\left(35n+20\right)⋮d\)
Hay \(1⋮d\)\(\Rightarrow d=1\)hoặc \(-1\)
Vì UCLN(5n+3 va 7n + 4 ) nên \(\frac{7n+4}{5n+3}\)tối giản với mọi n
k mink nha
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hếtcho d
=>1 chia hết cho d
=>d=1
=>PSTG
a)Gọi ƯC(5n+3,7n+4)=d
Ta có: 5n+3 chia hết cho d=>7.(5n+3)=35n+21 chia hết cho d
7n+4 chia hết cho d=>5.(7n+4)=35n+20 chia hết cho d
=>35n+21-35n-20=1 chia hết cho d
=>d=Ư(1)=1
=>d=1
=>(5n+3,7n+4)=1
=>Phân số 5n+3/7n+4 là phân số tối giản
=>ĐPCM
Gọi d là ƯCLN(7n+4,5n+3)
=>7n+4 chia hết cho d và 5n+3 chia hết cho d
=>5(7n+4)-7(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d hay d=-1
Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)
Làm ơn cho mình 1 đ ú n g với,chắc chắn mình đúng......................
Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )
Ta cso :
7n + 4 chia hết cho d
5n + 3 chia hết cho d
=> 5 ( 7n + 4 ) chia hết cho d
7 ( 5n + 3 ) chia hết cho d
=> 35 n + 20 chia hết cho d
35n + 21 chia hết cho d
=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
Gọi d là ƯCLN(7n+4,5n+3)
\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d
\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d
\(\Rightarrow\)35n+20-35n-21 \(⋮\) d
\(\Rightarrow\)-1 chia hết cho d hay d = -1
\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1
Đặt d là ƯCLN (7n+4; 5n+3)
Ta có :{7n+4/5n+3 (=) {35n+20/35n+21
(=) (35n+21) - (35n+20) = 1 chia hết cho d
vậy phân số 7n+4/5n+3 là phân số tối giản
\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)
\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)
\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)
\(\text{ Theo đề bài ta có :}\)
\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)
\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)
\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)
\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)
\(\Rightarrow 1 \vdots d\)
\(\Rightarrow d = 1\)
\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(#kisibongdem\)
Gọi \(ƯCLN\)\(\left(5n+3;7n+4\right)=d\)
\(\Rightarrow\orbr{\begin{cases}5n+3⋮d\Rightarrow7.\left(5n+3\right)⋮d\Rightarrow35n+21⋮d\\7n+4⋮d\Rightarrow5.\left(7n+4\right)⋮d\Rightarrow35n+20⋮d\end{cases}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{5n+3}{7n+4}\)tối giản