Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z
suy ra (2n+3)chia hết cho (kí hiệu) d
(3n+4)chia hết cho d
suy ra 3.(2n + 3)chia hết cho d
2.(3n +4)chia hết cho d
suy ra 3.2n+3.3chia hết cho d
2.3n+2.4chia hết cho d
suy ra 6n+9 chia hết cho d
6n +8 chia hết cho d
suy ra (6n+9)-(6n+8)chia hết cho d
suy ra 1chia hết cho d
suy ra d =1
vậy 2n+3/3n+4
a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )
=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d
=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d
=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản
a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
Gọi d là ƯCLN (2n+3, 3n+4) (d\(\in\)N*)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+3}{3n+4}\)là phân số tối giản
Gọi \(ƯCLN\left(2n+3;3n+4\right)\) là \(d\)
\(\Rightarrow\) \(\left(2n+3\right)⋮d\) và \(\left(3n+4\right)⋮d\)
\(\Rightarrow\) \(3\left(2n+3\right)⋮d\)và \(2\left(3n+4\right)⋮d\)
\(\Rightarrow\)\(\left(6n+9\right)⋮d\) và \(\left(6n+8\right)⋮d\)
\(\Rightarrow\)\(\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+9-8\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
Suy ra \(ƯCLN\left(2n+3;3n+4\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+3}{3n+4}\) là phân số tối giản