Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, không là số nguyên tố, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nuyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hộp số, loại
Vậy p = 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, không là số nguyên tố, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nuyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hộp số, loại
Vậy p = 3
gọi UCLN(6n+5,2n+3) là d
suy ra (6n+5) chia hêt cho d, (2n+3) chia hết cho d
suy ra [(2n+3)-(6n+5)] chia het cho d
suy ra [3.(2n+3)-(6n+5)] chia het cho d
suy ra [(3.2n+3.3)-(6n+5)] chia het cho d
suy ra[(6n+9)-(6n+5)] chia het cho d
suy ra 4 chia het cho d
suy ra d thuoc U(4)
suy ra d thuoc {1;2;4}
vi 6n ko chia het cho 4 va 5 ko chia het cho4
suy ra (6n+5) ko chia het cho 4
suy ra d ko bang 4
vi 6n chia het cho 2 va 5 ko chia het cho 2
suy ra (6n+5) ko chia het cho 2
suy ra d ko bang 2
do do d=1
suy ra UCLN(6n+5,2n+3)=1
suy ra 6n+5 va 2n+3 nguyen to cung nhau
vay: tu tra loi cai vay nhe, tao chi giup may the thoi
Gọi ƯLCN của 6n+5 và 2n+3 là d (d thuộc N sao)
=> 6n+5 và 2n+3 đều chia hết cho d
=> 6n+5 và 3.(2n+3) đều chia hết cho d hay 6n+5 và 6n+9 đều chia hết cho d
=> 6n+9-(6n+5) chia hết cho d hay 4 chia hết cho d (1)
Mà 2n+3 lẻ => d lẻ (2)
Từ (1) và (2) => d =1 ( vì d thuộc N sao )
=> ƯCLN của 6n+5 và 2n+3 là 1
=> 6n+5 và 2n+3 là 2 số nguyên tố cùng nhau
k mk nha
bn cứ giải theo kiểu gọi d là 1 ước ngto của 2 số đó ý...
Xin lỗi nha máy mình ko viết đc một số dấu ,có gì sai sót mong mọi người thông cảm và sửa lại giúp mình nha!
1)Gọi ước chung lớn nhất của 2n+1 và 2n+3 là a,với a thuộc tập hợp số tự nhiên
=>2n+1:a và 2n+3:a
=>(2n+3)-(2n+1):a
=>2:a
=>a thuộc tập hợp ước của 2
=>ước của 2=(1;2)
=>a=1;2
Vì 2n:2,với n thuộc tập hợp số tự nhiên,1 /:2
=>a=1
=>(2n+1,2n+3)=1
=>2n+1 và 2n+3 là hai số nguyên tố chùng nhau
CHÚC MỌI NGƯỜI HỌC TỐT NHÉ!
Gọi d là ƯCLN﴾2n+1;6n+5﴿ với d ≠ 0
=> 2n+1 chia hết cho d
=> 3﴾2n+1﴿ chia hết cho d
=> 6n+3 chia hết cho d ﴾1﴿
Do 6n +5 chia hết cho d
Từ ﴾1﴿ suy ra 6n+5 ‐ 6n+3 chia hết cho d hay 2 chia hết cho d
=> d ∈ {1;2}
Do 2n+1 ko chia hết cho 2
nên d ≠ 2
=> d=1
Vậy 2n + 1 va 6n + 5 la 2 so nguyen to cung nhau